Skip to main content

Advertisement

Log in

Fatigue Properties of Nickel Titanium and their Improvement Using Low-Energy High-Current Electron Beams

  • Published:
Russian Physics Journal Aims and scope

It is shown that by irradiating nickel titanium surfaces with a low-energy high-current electron beam of a microsecond duration at the energy densities of Es = 1.5 and 3.7 J/cm2 using n = 5 pulses it is possible to improve the fatigue characteristics of the material by nearly a factor of 1.5 due to surface cleaning from the particles/inclusions of Ti2Ni, TiC(O) and due to the presence in the TiNi surface layer of compressive residual stresses oriented perpendicular to the irradiated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and X. Ren, Prog. Mater. Sci., 50, 511 (2005).

    Article  Google Scholar 

  2. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des., 56, 1078 (2014).

    Article  Google Scholar 

  3. T. Duerig, A. Pelton, and D. Stöckel, Mater. Sci. Eng., A273–275, 149 (1999).

    Article  Google Scholar 

  4. D. W. Raboud, M. G. Faulkner, and A. W. Lipsett, Smart Mater. Struct., 9, 684 (2000).

    Article  ADS  Google Scholar 

  5. E. Bonnot, R. Romero, L. Mañosa, et al., Phys. Rev. Lett., 100, 125901 (2008).

    Article  ADS  Google Scholar 

  6. K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer, Nature, 428, 55 (2004).

    Article  ADS  Google Scholar 

  7. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nature Mater., 13, 439 (2014).

    Article  ADS  Google Scholar 

  8. S. A. Shabalovskaya, Biomed. Mater. Eng., 12, 69 (2002).

    Google Scholar 

  9. N. B. Morgan, Mater. Sci. Eng. A, 378, 16 (2004).

    Article  Google Scholar 

  10. A. R. Pelton, J. Mater. Eng. Perform., 20, 613 (2011).

    Article  Google Scholar 

  11. G. Eggeler, E. Hornbogen, A. Yawny, et al., Mater. Sci. Eng. A, 378, 24 (2004).

    Article  Google Scholar 

  12. S. Miyazaki, K. Mizukoshi, T. Ueki, et al., Mater. Sci. Eng. A, 273–275, 658 (1999).

    Article  Google Scholar 

  13. E. Hornbogen, J. Mater. Sci., 39, 385 (2004).

    Article  ADS  Google Scholar 

  14. K. Gall and H. J. Maier, Acta Mater., 50, 4643 (2002).

    Article  ADS  Google Scholar 

  15. S. Miyazaki, Y. Q. Fu, and W. M. Huang, Thin Film Shape Memory Alloys, CUP, Cambridge (2009).

    Book  Google Scholar 

  16. C. Bechtold, C. Chluba, R. Lima de Miranda, and E. Quandt, Appl. Phys. Lett., 101, 091903 (2012).

    Article  ADS  Google Scholar 

  17. G. Siekmeyer, A. Schüßler, R. Lima de Miranda, and E. Quandt, J. Mater. Eng. Perform., 23, 2437 (2014).

    Article  Google Scholar 

  18. R. Lima de Miranda, C. Zamponi, and E. Quandt, Adv. Eng. Mater., 15, 66 (2013).

    Article  Google Scholar 

  19. V. Rotshtein, Yu. Ivanov, and A. Markov, Materials Surface Processing by Directed Energy Techniques (Ed. Y. Pauleau), Elsevier, Amsterdam (2006).

  20. Y. Qin, J. Zou, C. Dong, et al., Nucl. Instrum. Methods. B, 225, 544 (2004).

    Article  ADS  Google Scholar 

  21. L. L. Meisner, V. O. Semin, Yu. P. Mironov, et al., Mater. Today Commun., 17, 169 (2018).

    Article  Google Scholar 

  22. L. L. Meisner, A. B. Markov, V. P. Rotshtein, et al., J. Alloys Comp., 730, 376 (2018).

    Article  Google Scholar 

  23. G. E. Ozur, A. B. Markov, and A. G. Padei, RF Utility model patent RU No. 97005 U1 as of 23.04.2010. IPC H01J 3/02.

  24. L. L. Meisner, A. B. Markov, D. I. Proskurovsky, et al., Surf. Coat. Technol., 302, 495 (2016).

    Article  Google Scholar 

  25. A. Coda, S. Zilio, D. Norwich, and F. Sczerzenie, J. Mater. Eng. Perform., 21(12), 2572 (2012).

    Article  Google Scholar 

  26. S. N. Meisner, E. V. Yakovlev, V. O. Semin, et al., Appl. Surf. Sci., 437, 217 (2018).

    Article  ADS  Google Scholar 

  27. E. Gałdecka, International Tables for Crystallography, C(5.3), 505 (2006).

  28. M. Birkholz, Thin Film Analysis by X-ray Scattering, Willey-VCH Verlag, Weinheim (2006).

    Google Scholar 

  29. M. Härting, S. Nsengiyumva, A. T. Rajia, et al., Surf. Coat. Technol., 201(19–20), 8237 (2007).

    Article  Google Scholar 

  30. C.-H. Ma, J.-H. Huang, and Chen Haydn, Thin Solid Films, 418(2), 73 (2002).

  31. W. C. Oliver and G. M. Pharr, J. Mater. Res., 19(01), 3 (2004).

    Article  ADS  Google Scholar 

  32. R. Z. Valiev, IR. K. slamgaliev, I. V. Alexandrov, et al., Prog. Mater. Sci., 45(2), 103 (2000).

  33. S. N. Meisner, F. A. Diachenko, E. V. Yakovlev, and L. L. Meisner, Izvestiya VUZov.Fiz., 59, No. 7/2, 159 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Meisner.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 79–87, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meisner, S.N., Meisner, L.L., Neiman, A.A. et al. Fatigue Properties of Nickel Titanium and their Improvement Using Low-Energy High-Current Electron Beams. Russ Phys J 64, 850–858 (2021). https://doi.org/10.1007/s11182-021-02399-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02399-y

Keywords

Navigation