Skip to main content
Log in

Modulated Pseudo-Hermitian Dimer

  • Published:
Russian Physics Journal Aims and scope

A modulated pseudo-Hermitian optical dimer is investigated. The parameter ranges are determined where the eigenmodes of the dimer conserve their power. It is shown that such a dimer has several exceptional points, and it is found that the dimer modes can conserve their average power over the period even if each of its segments is in the PT-broken phase. On the other hand, even if each segment is in the PT symmetric phase, the average power over the period is not conserved for the dimer. Thisspecial feature is determined by the relationship between the dimer length and the beat period of the signal in the individual segments of the dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. C. M. Bender and S. Boettcher, Phys. Rev. Lett., 80, 5243–5246 (1998).

    ADS  MathSciNet  Google Scholar 

  2. C. M. Bender, Rep. Prog. Phys., 70, 947–1018 (2007).

    Article  ADS  Google Scholar 

  3. D. Christodoulides and J. Yang, eds., Parity-Time Symmetry and Its Applications, Springer, Singapore (2018).

    Google Scholar 

  4. R. El-Ganainy, K. G. Makris, M. Khajavikhan, et al., Nat. Phys., 14, 11–19 (2018).

    Article  Google Scholar 

  5. V. V. Konotop, J. K. Yang, and D. A. Zezyulin, Rev. Mod. Phys., 88, 035002 (2016).

  6. S. V. Suchkov, A. A. Sukhorukov, J. H. Huang, et al., Laser Photon. Rev., 10, 177–213 (2016).

    Article  ADS  Google Scholar 

  7. D. K. Ozdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater., 18, 783–798 (2019).

    Article  ADS  Google Scholar 

  8. H. Hodaei, M. A. Miri, A. U. Hassan, et al., Laser Photon. Rev., 10, 494–499 (2016).

    Article  ADS  Google Scholar 

  9. J. Ren, H. Hodaei, G. Harari, et al., Opt. Lett., 42, 1556–1559 (2017).

    Article  ADS  Google Scholar 

  10. H. Hodaei, A. U. Hassan, S. Wittek, et al., Nature, 548, 187–200 (2017).

    Article  ADS  Google Scholar 

  11. D. D. Smith, H. Chang, L. Horstman, and J.-C. Diels, Opt. Express, 27, 34169–34191 (2019).

    Article  ADS  Google Scholar 

  12. A. Mostafazadeh, J. Math. Phys. 43, 205–214 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Mostafazadeh, Int. J. Geom. Methods Mod. Phys., 7, 1191–1306 (2010).

    Article  MathSciNet  Google Scholar 

  14. S. V. Suchkov, F. Fotsa-Ngaffo, A. Kenfack-Jiotsa, et al., New J. Phys., 18, 065005 (2016).

  15. R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. N. Musslimani, Opt. Lett., 32, 2632–2634 (2007).

    Article  ADS  Google Scholar 

  16. A. A. Sukhorukov, Z. Y. Xu, and Y. S. Kivshar, Phys. Rev. A, 82, 043818 (2010).

    Article  ADS  Google Scholar 

  17. I. V. Barashenkov, S. V. Suchkov, A. A. Sukhorukov, et al., Phys. Rev. A, 86, 053809 (2012).

    Article  ADS  Google Scholar 

  18. X. B. Luo, J. H. Huang, H. H. Zhong, et al., Phys. Rev. Lett., 110, 243902 (2013).

    Article  ADS  Google Scholar 

  19. G. Della Valle and S. Longhi, Phys. Rev. A, 87, 022119 (2013).

    Article  ADS  Google Scholar 

  20. A. D. Bezpaly, V. M. Shandarov, A. E. Mandel, et al., Russ. Phys. J., 62, No. 3, 387–392 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Suchkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 104–108, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchkov, S.V. Modulated Pseudo-Hermitian Dimer. Russ Phys J 63, 1947–1951 (2021). https://doi.org/10.1007/s11182-021-02255-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02255-z

Keywords

Navigation