Skip to main content
Log in

Nucleation of Plasticity in Alpha-Iron Nanowires

  • Published:
Russian Physics Journal Aims and scope

The paper presents research results of the defect nucleation and propagation in the structure of nanosized iron samples with a perfect body-centered cubic lattice under a uniaxial tension along different crystallographic directions. The molecular dynamics method is used in these investigations. It is found that the mechanisms of plasticity nucleation considerably depend on the sample orientation relative to the load direction. The yield point exceedance along the [11\( \overline{2} \)] crystallographic direction leads to the twin nucleation on one of the sample edges. In this twin, the formation of dislocations occurs. Localized face-centered cubic arrangements can appear at the front of twinning dislocations. A large number of twins having the high growth velocity and low thickness generate in the crystal during tension along the [1\( \overline{1} \)0] crystallographic direction. During tension, the twins tend to transform to dislocations. If tension occurs along the [111] crystallographic direction, the plastic strain generation has a well-defined dislocation nature. An avalanche of dislocations proceeding from tension causes the dislocation piercing of the free surface, leaving vacancies in the bulk material at their intersections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Dehm, B. N. Jaya, R. Raghavan, et al., Acta Mater., 142, 248–282 (2018).

    Article  Google Scholar 

  2. O. Kraft, P. A. Gruber, R. Mönig, et al., Annu. Rev. Mater. Res., 40, No. 1, 293–317 (2010).

    Article  ADS  Google Scholar 

  3. J. R. Greer and J. T.M. De Hosson, Progr. Mater. Sci., 56, No. 6, 654–724 (2011).

    Article  Google Scholar 

  4. C. R. Weinberger and W. Cai, J. Mater. Chem., 22, 3277–3292 (2012)

    Article  Google Scholar 

  5. T. H. Fang, W. L. Li, N. R. Tao, et al., Science, 331, 1587–1590 (2011).

    Article  ADS  Google Scholar 

  6. T. Zhu and J. Li, Progr. Mater. Sci., 55, 710–757 (2010).

    Article  Google Scholar 

  7. K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich, et al., Phys. Mesomech., 21, 492–497 (2018).

    Article  Google Scholar 

  8. D. S. Kryzhevich, K. P. Zolnikov, and A. V. Korchuganov, Comput. Mater. Sci., 153, 445–448 (2018).

    Article  Google Scholar 

  9. S. G. Psakhie, E. V. Shilko, and S. V. Astafurov, Tech. Phys. Lett., 30, 237–239 (2004).

    Article  ADS  Google Scholar 

  10. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, et al., J. Mater. Sci. Technol., 35, No. 1, 201–206 (2019).

    Article  Google Scholar 

  11. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Pis’ma o materialah, 9, No. 2, 197–201 (2019).

    Google Scholar 

  12. A. V. Korchuganov, K. P. Zolnikov, D. S. Kryzhevich, and S. G. Psakhie, Russ. Phys. J., 60, No. 1, 170–174 (2017).

    Article  Google Scholar 

  13. A. Yu. Smolin, G. M. Eremina, V. V. Sergeev, et al., Phys. Mesomech., 17, 292–303 (2014).

    Article  Google Scholar 

  14. A. V. Korchuganov, K. P. Zolnikov, and D. S. Kryzhevich, Mater. Lett., 252, 194–197 (2019).

    Article  Google Scholar 

  15. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, et al., Sci. Rep., 9, No. 1, 3867 (2019).

    Article  ADS  Google Scholar 

  16. J. Harding, Proc. Royal Soc. A, 299, 464–490 (1967).

    ADS  Google Scholar 

  17. I. J. Beyerlein, X. Zhang, and A. Misra, Annu. Rev. Mater. Res., 44, 329–363 (2014).

    Article  ADS  Google Scholar 

  18. L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, et al., Nature, 550, 492–495 (2017).

    Article  ADS  Google Scholar 

  19. G. Sainath and B. K. Choudhary, Comput. Mater. Sci., 111, 406–415 (2016).

    Article  Google Scholar 

  20. S. Plimpton, J. Comput. Phys., 117, 1–19 (1995).

    Article  ADS  Google Scholar 

  21. L. Malerba, M. C. Marinica, N. Anento, et al., J. Nucl. Mater., 406, 19–38 (2010).

    Article  ADS  Google Scholar 

  22. T. Schneider and E. Stoll, Phys. Rev. B, 17, 1302–1322 (1978).

    Article  ADS  Google Scholar 

  23. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 91, 4950–4963 (1987).

    Article  Google Scholar 

  24. A. Stukowski and K. Albe, Modelling Simul. Mater. Sci. Eng., 18, 085001 (2010).

    Google Scholar 

  25. A. Stukowski, Modelling Simul. Mater. Sci. Eng., 18, 015012 (2010).

    Google Scholar 

  26. C. R. Weinberger and W. Cai, Proc. Natl. Acad. Sci. USA, 105, 14304–14307 (2008).

    Article  ADS  Google Scholar 

  27. J. Wang, Z. Zeng, C. R. Weinberger, et al., Nat. Mater., 14, 594–600 (2015).

    Article  ADS  Google Scholar 

  28. C. R. Weinberger, B. L. Boyce, and C. C. Battaile, Int. Mater. Rev., 58, 296–314 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Zolnikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 43–49, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolnikov, K.P., Kryzhevich, D.S. & Korchuganov, A.V. Nucleation of Plasticity in Alpha-Iron Nanowires. Russ Phys J 63, 947–953 (2020). https://doi.org/10.1007/s11182-020-02122-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02122-3

Keywords

Navigation