Skip to main content
Log in

Structure and Phase Composition of Ferriticperlitic Steel Surface after Electrolytic Plasma Quenching

  • Published:
Russian Physics Journal Aims and scope

The paper presents the transmission electron microscopy investigations of the structure and phase composition of ferritic-perlitic ST2 steel surface after electrolytic plasma quenching. The steel in the initial state represents the material after hardening at 890°С for 2 or 2.5 hours and quenching in warm (30–60°С) water with subsequent tempering at 580°C for 2.5 or 3 hours. Electrolytic plasma quenching is carried out at 850–900°С in an aqueous salt solution for 4 seconds, at 320 V voltage and 40 A current. In the initial state, the morphology of the steel matrix consists of lamellar perlite and nonfragmented and fragmented ferrite. Electrolytic plasma quenching of the steel surface results in the martensite transformation, steel self-tempering, and the formation of cementite particles in all martensite crystals. This treatment also leads to the diffusion transformation of γ → α phases, the release of residual austenite (γ -phase) along the low-temperature martensite laths and lamellas and in all crystals of lamellar martensite, the formation of М23С6 special carbides and, finally, to the enhancement of all parameters of the steel fine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Mikhal’chenkov, A. A. Novikov, A. A. Tyureva, and V. N. Ryzhik, Konstruirovanie, ispol’zovanie i nadezhnost’ mashin sel’skokhozyaistvennogo naznacheniya, No. 1 (15), 166–174 (2016).

  2. E. A. Zverev, V. Yu. Skiba, P. V. Tregubchak, et al., Aktual’nye problemy v mashinostroenii, No. 3, 65–70 (2016).

  3. I. A. Rastegaev, V. A. Korotkov, M. A. Afanas’ev, and D. L. Merson, Zav. lab. Diagnostika materialov, 83, No. 5, 62–65 (2017).

    Google Scholar 

  4. M. V. Grechneva, Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 21, No. 5, 10–23 (2017).

    Google Scholar 

  5. V. V. Ivantsivskii, E. A. Zverev, N. V. Vakhrushev, and K. A. Parts, Aktual’nye problemy v mashinostroenii, No. 3–4, 24–29 (2018).

  6. V. A. Korotkov, Chem. Pet. Eng., 53, No. 9–10, 627–630 (2018).

    Google Scholar 

  7. E. Liverani, A. H. A. Lutey, A. Ascari, et al., Surf. Coat. Technol., 302, 100–106 (2016).

    Google Scholar 

  8. Oh. Sehyeok and H. Ki, Appl. Therm. Eng., 121, 951–962 (2017).

    Google Scholar 

  9. J. Sundqvist, T. Manninen, H. P. Heikkinen, et al., Surf. Coat. Technol., 344, No. 7, 673–679 (2018).

    Google Scholar 

  10. E. Anusha, A. Kumar, and S. M. Shariff, Opt. Laser Technol., 125, 106061 (2020).

  11. L. V. Fedorova, S. K. Fedorov, Yu. S. Ivanova, and A. M. Lompas, Izv. Vyssh. Uchebn. Zaved. Mashinostroenie, No. 9, 85–922017.

  12. K. K. Kombaev, M. K. Kylyshkanov, and Yu. I. Lopukhov, Zhurnal Sibirskogo federal’nogo universiteta. Ser.: Tekhnika i tekhnologii, 2, No. 4, 394–399 (2009).

    Google Scholar 

  13. А. D. Pogrebnyak, A. Sh. Kaverina, and M. K. Kylyshmanov, Prot. Met. Phys. Chem., 50, No. 1, 72–87 (2014).

    Google Scholar 

  14. K. K. Kombayev, L. I. Kveglis, S. E. Sandybay, and A. T. Shokputova, SITA, 20, No. 1, 46–52 (2018).

    Google Scholar 

  15. N. A. Koneva and E. V. Kozlov, Soviet Phys. J., 25, No. 8, 681–691 (1982).

    ADS  Google Scholar 

  16. M. A. Shtremel’, Strength of Alloys. Defects of Lattice [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  17. E. V. Kozlov, N. A. Popova, O. V. Kabanina, et al., Evolution of Phase Composition, Defect Structure, Internal Stresses and Carbon Redistribution During Tempering of Cast Construction Steel [in Russian], Novokuznetsk (2007).

  18. E. V. Kozlov, N. A. Popova, and N. A. Koneva, Bulletin of the Russian Academy of Sciences: Physics, 68, No. 10, 1587–1560 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Popova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 74–79, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Nikonenko, E.L., Tabieva, E.E. et al. Structure and Phase Composition of Ferriticperlitic Steel Surface after Electrolytic Plasma Quenching. Russ Phys J 63, 791–796 (2020). https://doi.org/10.1007/s11182-020-02099-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02099-z

Keywords

Navigation