Skip to main content
Log in

Structure and Phase Composition of Ti–6Al–4V Alloy Obtained by Electron-Beam Additive Manufacturing

  • Published:
Russian Physics Journal Aims and scope

The paper presents the fabrication of Ti–6Al–4V alloy specimens using two operating modes of the electron beam additive manufacturing (EBAM). The structure, phase composition and microhardness of the obtained alloy specimens are investigated. The EBAM process includes a deposition of Ti–6Al–4V wire onto a substrate comprising of VT1-0 (grade 2) titanium alloy and 12Kh18N10 (AISI 321) stainless steel. It is shown that at a high electron beam current, the height and width of the β-phase columnar grains are lower than at a low electron beam current. This phenomenon is discussed in terms of stabilization of the temperature gradient and the increased cooling rate during the building process. This phenomenon is caused by the formation of Fe2Ti, FeTi and Cr2Ti intermetallic phases in the diffusion bonding appeared between the titanium and stainless steel plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Banerjee and J. C. Williams, Acta Mater., 61, No. 3, 844–879 (2013).

    Article  Google Scholar 

  2. A. V. Panin, M. S. Kazachenok, O. B. Perevalova, et al., Phys. Mesomech., 21, No. 5, 441–451 (2018).

    Article  Google Scholar 

  3. S. Singh, S. Ramakrishna, and R. J. Singh, J. Manuf. Process., 25, 185–200 (2017).

    Google Scholar 

  4. Z. Li, C. Liu, T. Xu, et al., Mater. Sci. Eng., A742, 1–26 (2018).

    Article  Google Scholar 

  5. P. A. Colegrove, H. E. Coules, J. Fairman, et al., J. Mater. Process. Tech., 213, No. 10, 1782–1791 (2013).

    Article  Google Scholar 

  6. Q. Wu, J. Lu, C. Liu, et al., Materials, 10, No. 7, 1–11 (2017).

    Article  ADS  Google Scholar 

  7. M. J. Bermingham, D. Kent, H. Zhan, et al., Acta Mater., 91, 289–303 (2015).

    Article  Google Scholar 

  8. J. Fuchs, C. Schneider, and N. Enzinger, Weld. World, 62, No. 2, 267–275 (2018).

    Article  Google Scholar 

  9. F. Lia, J. Z. Park, J. S. Keist, et al., Mater. Sci. Eng., A717, 1–10 (2018).

    Article  Google Scholar 

  10. S. S. Al-Bermani, M. L. Blackmore, W. Zhang, et al., Metall. Mater. Trans. A, 41, No. 13, 3422–3434 (2010).

    Article  Google Scholar 

  11. S. Kundu, D. Roy, S. Chatterjee, et al., Mater. Design, 37, 560–568 (2012).

    Article  Google Scholar 

  12. H. Z. Fu and L. Liu, Mater. Sci. Forum, 475–479, 607–612 (2005).

    Article  Google Scholar 

  13. Li Z., Liu C., Xu T., et al., Mater. Sci. Eng. A, 742, 287–294 (2018).

    Article  Google Scholar 

  14. N. Stanford and P. S. Bate Acta Mater., 52, No. 17, 5215–5224 (2004).

    Article  Google Scholar 

  15. Y. Terada, K. Ohkubo, K. Nakagawa, et al., Intermetallics, 3, 341–355 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Utyaganova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 143–150, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utyaganova, V.R., Vorontsov, A.V., Eliseev, A.A. et al. Structure and Phase Composition of Ti–6Al–4V Alloy Obtained by Electron-Beam Additive Manufacturing. Russ Phys J 62, 1461–1468 (2019). https://doi.org/10.1007/s11182-019-01864-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01864-z

Keywords

Navigation