Skip to main content
Log in

Electrophysical Properties and Determination of the Impedance of Vestibular Labyrinth Tissues

  • Published:
Russian Physics Journal Aims and scope

A detailed electric model of current transmission through vestibular labyrinth tissues is suggested based on the anatomic structure of the labyrinth taking into account electrophysical properties of hair and basilar cells of neuroepithelium. Formulas for the impedance of the vestibular organ are derived and phase shifts of the stimulating current are calculated based on experimental data on the electrophysical and anatomic characteristics of vestibular labyrinth tissues of a guinea pig. The dispersion of the impedance is investigated for the frequencies in the range 101–5·104 Hz. It is shown that the phase shift of the current relative to the voltage applied between the electrode and the vestibular nerve is nonmonotonic in character and depends on the frequency. A minimum negative phase shift of the current is observed at f = 200 Hz. Taking into account of the cellular structures of the hair and basilar cells in the electric circuit shows that in the examined frequency range they bring significant contribution to the total impedance. The suggested electric model and the results of calculations can provide the basis for diagnostics of vestibular labyrinth diseases and design of vestibular implants of a new type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. F. Voropayeva and Yu. I. Shokin, Vychisl. Tekhnol., 17, No. 4, 29–55 (2012).

    Google Scholar 

  2. G. I. Marchuk, Medits. Vysok. Tekhnol., No. 2, 3–6 (2012).

    Google Scholar 

  3. G. Yu. Riznichenko, Mathematical Models in Biophysics and Ecology [in Russian], Publishing House of Institute of Computer Science, Izhevsk, Moscow (2003).

    Google Scholar 

  4. S. V. Antonenko, E. S. Belyanskaya, A. F. Indyukhin, and I. S. Lebedenko, Vestn. Novykh Medicinsk. Tekhnolog. Electronic Edition, No. 1 (2013).

  5. A. Lloret-Villas, T. M. Varusai, N. Juty N., et al., Pharmacology, 6, 73–86 (2017).

  6. R. Van de Berg, N. Guinand, and T. A. K. Nguyen, Frontiers in System Neyrosciense, 8, 1–12 (2012).

    Google Scholar 

  7. D. Jiang, A. Demosthenous, T. A. Perkins, et al., IEEE Trans. Biomed. Circuits and Systems, 5, No. 2, 147–159 (2011).

    Article  Google Scholar 

  8. W. Gong and D. M. Merfeld, Ann. Biomed. Eng., 28, 572–581 (2000).

    Article  Google Scholar 

  9. A. P. Bradshaw, J. Assoc. Res. Otolaryngol., 11, No. 2, 145–159 (2010).

    Article  Google Scholar 

  10. P. Selva, J. Morlier, and Y. Gourinat, Int. J. Comput. Vis Biomech., 3, No. 2, 149–156 (2010).

    Google Scholar 

  11. V. V. Alexandrov, T. B. Alexandrova, R. Vega, et al., in: Proc. 4th WSEAS Int. Conf. on Mathematical Biology and Ecology (MABE’ 08), Acapulco (2008).

  12. C. F. Santos, J. Belinha, F. Gentil, et al., Acta Bioeng. Biomech., 19, No. 1, 3–15 (2017).

    Google Scholar 

  13. V. P. Demkin, P. P. Shchetinin, S. S. Melnichuk, et al., Russ. Phys. J., 60, No. 11, 2019–2024 (2017).

    Article  Google Scholar 

  14. A. L. Zuev, V. Yu. Mishlanov, A. I. Sudakov, et al., Ross. Zh. Biomekh., 18, No. 4, 491–497 (2012).

    Google Scholar 

  15. V. V. Alexandrov, A. Almanza, N. V. Kulikovskaya, et al., in: Mathematical Modeling of Complex Information Processing Systems, Moscow University Press (2001), pp. 26–41.

  16. R. Van de Berg, N. Guinand, and T. A. K. Nguyen, Frontiers in System Neyrosciense, 8, 1–12 (2012); DOI: https://doi.org/10.3389/fnsys.2014.00255.

    Google Scholar 

  17. W. Gong and D. M. Merfeld, Ann. Biomed. Eng., 28, 572–581 (2000).

    Article  Google Scholar 

  18. T. A. K. Nguyen, J. Digiovanna, S. Cavuscens, et al., J. Neural Eng., 13, No. 4, AN046023 (2016).

    Article  ADS  Google Scholar 

  19. M. Handler, P. Schier, K. D. Fritscher, et al., Frontiers in Neyrosciense, 1, 1–12 (2017); DOI: https://doi.org/10.3389/fnins.2017.00713.

    Google Scholar 

  20. I. S. Curthoys, C. H. Markham, and E. J. Curthoys, J. Morphology, 151, No. 1, 17–34 (1977).

    Article  Google Scholar 

  21. D. Das, F. A. Kamil, K. Biswas, and S. Dasa, RSC Adv., 35, 1–8 (2014); DOI: https://doi.org/10.1039/c0xx00000x.

    Google Scholar 

  22. F. RattayI. C. Gebeshuber, and A. H. Gitter, J. Acoust. Soc. Am., 103, No. 3, 1558–1565 (1998).

    Article  ADS  Google Scholar 

  23. R. Hayden, S. Sawyer, F. Frey, et al., Exp. Brain Res., 210 (3–4), 623–640 (2011).

    Article  Google Scholar 

  24. P. Marszalek, J. J. Zielinsky, M. Fikus, and T. Y. Tsong, Biophys. J., 59, 982–987 (1991).

    Article  ADS  Google Scholar 

  25. D. Das, F. A. Kamil, K. Biswasa, and S. Dasa, RSC Adv., 4, 18178–18185 (2014).

    Article  Google Scholar 

  26. K. Wang, Y. Zhao, D. Chen, et al., Sci. Data, 4:170015, 1–8 (2017).

    Google Scholar 

  27. J.-H. Nam and R. Fettiplace, Plos One, 7, No. 11, 1–10 (2012).

    Article  Google Scholar 

  28. S. L. Johnson, eLIFE: Neuroscience, 4, 1–21 (2015).

    Google Scholar 

  29. R. W. Murray and W. T. W. Potts, Comp. Biochem. Physiol., 2, 65–76 (1961).

    Article  Google Scholar 

  30. E. Du, S. Ha, M. Diez-Silva, et al., Lab Chip., 13, 3903–3909 (2013).

    Article  Google Scholar 

  31. T. K. Bera, J. Med. Eng., 2014, 28 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Demkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 68–75, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demkin, V.P., Melnichuk, S.V., Shchetinin, P.P. et al. Electrophysical Properties and Determination of the Impedance of Vestibular Labyrinth Tissues. Russ Phys J 61, 2019–2027 (2019). https://doi.org/10.1007/s11182-019-01632-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01632-z

Keywords

Navigation