Skip to main content

Advertisement

Log in

The Mechanism of Orientation Dependence of Cyclic Stability of Superelesticity in NiFeGaCo Single Crystals Under Compression

  • Published:
Russian Physics Journal Aims and scope

Using single crystals of the Ni49Fe18Ga27Co6 (at.%) alloy, oriented along [001]- and [123]-directions, cyclic stability of superelasticity is investigated in isothermal loading/unloading cycles at T = Af +(12–15) K (100 cycles) under compressive stress as a function of given strain per cycle, presence of disperse γ-phase particles measuring 5–10 μm, austenitic (B2 or L21) and stress-induced martensitic crystal structure (14M or L10). It is shown that single-phase L21-crystals demonstrate high cyclic stability during L21–14M-transitions with narrow hysteresises Δσ < 50 MPa in the absence of detwinning of the martensite. During the development of L21–14M stress-induced transformation, the reversible energy ΔGrev for these crystals exceeds the dissipated energy ΔGirr, and ΔGrev/ΔGirr = 1.7–1.8. A significant degradation of superelasticity is observed in [123]-oriented crystals during the development of L21–14M–L10-transformations followed by detwinning of the L10-martensite crystals and heterophase (B2+γ) single crystals, irrespective of their orientation during the B2–L10-transition. In the latter case, martensitic transformations are characterized by a wide stress hysteresis Δσ ≥ 80 MPa and the dissipated energy exceeds the reversible energy ΔGrev/ΔGirr = 0.5. The empirical criterion, relying on the analysis of the reversible-to-irreversible energy ratio, ΔGrev/ΔGirr, during stressinduced martensitic transformations, can be used to predict the cyclic stability of superelasticity in NiFeGaCo alloys subjected to different types of heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Karaca, I. Karaman, B. Basaran, et al., Acta Mater., 54, 233–245 (2006).

    Article  Google Scholar 

  2. H. Morito, A. Fujita , K. Oikawa, et al., Appl. Phys. Lett., 90, 062505 (2007).

    Article  ADS  Google Scholar 

  3. E. Panchenko, Y. Chumlyakov, H. J. Maier, et al., Intermetallics, 18, 2458–2463 (2010).

    Article  Google Scholar 

  4. P. Mullner, V. A. Chernenko, and G. Kostorz, J. Appl. Phys., 95, 1531–1536 (2004).

    Article  ADS  Google Scholar 

  5. C. Efstathiou, H. Sehitoglu, P. Kurath, et al., Scripta Mater., 57, 409–412 (2007).

    Article  Google Scholar 

  6. E. Yu. Panchenko, Yu. I. Chumlyakov, E. E. Timofeeva, et al., Russ. Phys. J., 55, No. 9, 1046–1051 (2013).

    Article  Google Scholar 

  7. R. F. Hamilton, H. Sehitoglu, C. Efstathio, and H. J. Maier, Acta Mater., 55, 4867–4876 (2007).

    Article  Google Scholar 

  8. J. Liu, N. Scheerbaum, D. Hinz, and O. Gutfleisch, Acta Mater., 56, 3177–3186 (2008).

    Article  Google Scholar 

  9. E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, et al., Mater. Sci. Eng. A, 640, 465–470 (2015).

    Article  Google Scholar 

  10. A. L. Roytburd and Ju. Slusker, Mater. Sci. Eng. A, 238, 23–31 (1997).

    Article  Google Scholar 

  11. A. L. Roytburd, Mater. Sci. Forum., 327328, 389–392 (2000).

    Article  Google Scholar 

  12. C. Efstathiou, H. Sehitoglu, J. Carroll, et al., Acta Mater., 56, 3791–3799 (2008).

    Article  Google Scholar 

  13. E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, and A. I. Tagiltsev, Russ. Phys. J., 57, No. 9, 1268–1277 (2015).

    Article  Google Scholar 

  14. Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., 54, No. 8, 937–950 (2012).

  15. K. Gall and H. Maier, Acta Mater., 50, 4643–4657 (2002).

    Article  Google Scholar 

  16. C. Yu, G. Kang, and Q. Kan, Mech. Phys. Solids, 82, 97–136 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Liu, I. Houver, H. Xiang, et al., Metallurg. Mater. Trans. A, 30A, 1275–1282 (1999).

    Article  Google Scholar 

  18. J. Dadda, H. J. Maier, D. Niklasch, et al., Metallurg. Mater. Trans. A, 39A, 2026–2039 (2008).

    Article  ADS  Google Scholar 

  19. E. Pieczyska, S. Gadaj, W. K. Nowacki, et al., Sci. Technol. Adv. Mater., 6, 889–894 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Timofeeva.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 114–122, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, E.E., Panchenko, E.Y., Vetoshkina, N.G. et al. The Mechanism of Orientation Dependence of Cyclic Stability of Superelesticity in NiFeGaCo Single Crystals Under Compression. Russ Phys J 59, 1251–1260 (2016). https://doi.org/10.1007/s11182-016-0899-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0899-0

Keywords

Navigation