Skip to main content
Log in

Production of CeO2 Nanoparticles by Method of Laser Ablation of Bulk Metallic Cerium Targets in Liquid

  • Published:
Russian Physics Journal Aims and scope

The method of pulsed laser ablation in liquid was used to synthesize dispersions of cerium oxide nanoparticles when subjecting a metallic cerium target in water and alcohol to basic frequency radiation of the nanosecond Nd:YAG laser (1064 nm, 7 ns, 20 Hz). Researchers have studied the effect of laser radiation parameters, duration of impact, and optical scheme of experiment on the ablation process. The average rate of nanoparticle production was 50 mg/h in water and 25 mg/h in alcohol. Researchers have studied the size characteristics and crystalline structure of the nanoparticles produced. The particles have bimodal size distribution with 6 nm and 25 nm maximums. The average crystallite size is 17–19 nm. The crystalline structure of nanoparticles, namely cubic cerium oxide (fluorite structure), space group Fm-3m, is confirmed by the X-ray diffraction data, as well as optical absorption spectra and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zeng, X. -W. Du, S. C. Singh, et al., Adv. Funct. Mater., 22, 1333–1353 (2012).

    Article  Google Scholar 

  2. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, J. Nanopart. Res., 4, 499– 509 (2002).

  3. T. Tsuji, M. Nakanishi, T. Mizuki, et al., Appl. Surf. Sci., 255, 9626–9629 (2009).

    Article  ADS  Google Scholar 

  4. D. Tan, S. Zhou, J. Qiu, and N. Khusro, J. Photochem. Photobiol. C, 17, (2013) 50–68.

  5. T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Photochem. Photobiol. A, 182, 335– 341 (2006).

  6. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, et al., Appl. Surf. Sci., 186, 546– 551 (2002).

    Article  ADS  Google Scholar 

  7. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 56, No. 5, 581 – 587 (2013).

    Article  Google Scholar 

  8. D. Goncharova, I. N. Lapin, and V. A. Svetlichnyi, Adv. Mater. Res., 1085, 182–186 (2015).

    Article  Google Scholar 

  9. V. K. Ivanov, A. B. Shcherbakov, and A. V. Usatenko, Russ. Chem. Rev., 78, No. 9, 855–872 (2009).

    Article  ADS  Google Scholar 

  10. O. S. Polezhaeva, N. V. Yaroshinskaya, and V. K. Ivanov, Russ. J. Inorg. Chem., 52, No. 8, 1184–1188 (2007).

    Article  Google Scholar 

  11. A. Trovarelli, Catal. Rev., 38, No. 4, 439–520 (1996).

    Article  Google Scholar 

  12. J. Kašpar, P. Fornasiero, and M. Graziani, Catal. Today, 50, No. 2, 285–298 (1999).

    Article  Google Scholar 

  13. R. V. Gulyaev, E. M. Slavinskaya, S. A. Novopashin, et al., Appl. Catal. B, 147, 132–143 (2014).

    Article  Google Scholar 

  14. M. S. Wason and J. Zhao, Am. J. Transl. Res., 5, No. 2, 126–131 (2013).

    Google Scholar 

  15. C. Walkey, S. Das, S. Seal, et al., Environ. Sci. Nano, 2, 33–53 (2015).

    Article  Google Scholar 

  16. S. S. Lee, W. Song, M. Cho, et al., ACS Nano, 7, No. 11, 9693–9703 (2013).

    Article  Google Scholar 

  17. Z. Lu, C. Mao, M. Meng, et al., J. Colloid Interface Sci., 435, 8–14 (2014).

    Article  Google Scholar 

  18. S. Yabe and T. Sato, J. Solid State Chem., 171, 7–11 (2013).

    Article  ADS  Google Scholar 

  19. N. M. Zholobak, V. K. Ivanov, A. B. Shcherbakov, et al., J. Photochem. Photobiol. B, 102, 32–38 (2011).

    Article  Google Scholar 

  20. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 57, No. 12, 1789 – 1792 (2015).

    Article  Google Scholar 

  21. Y. Takeda and F. Mafuné, Chem. Phys. Lett., 599, 110–115 (2014).

    Article  ADS  Google Scholar 

  22. W. Wang, J. Y. Howe, Y. Li, et al., J. Mater. Chem., 20, 7776–7781 (2010).

    Article  Google Scholar 

  23. J. E. Spanier, R. D. Robinson, F. Zhang, et al., Phys. Rev. B, 64, 245407/1–8 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Svetlichnyi.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 106–112, November 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlichnyi, V.A., Lapin, I.N. Production of CeO2 Nanoparticles by Method of Laser Ablation of Bulk Metallic Cerium Targets in Liquid. Russ Phys J 58, 1598–1604 (2016). https://doi.org/10.1007/s11182-016-0689-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0689-8

Keywords

Navigation