Skip to main content
Log in

WKB Approxiation of the Dirac Equation with a Supersymmetric Extension

  • Published:
Russian Physics Journal Aims and scope

A general scheme of the self-consistent construction of a semiclassical approximation for the Dirac equation in an external gauge field in which the standard Dirac operator is replaced by the Dirac operator with a supersymmetric extension is presented. It is shown that in contrast to the usual WKB method, here the expansion must be carried out over half-integer powers of the Planck constant ħ. The first four terms of the semiclassical expansion of the wave function are obtained in explicit form. It is shown that generalization of the initial Dirac operator leads to the appearance of new additional terms in the semiclassical equation of motion for the spin of a particle in an external field, which thus requires a modification of the Lagrangian of the spinning particle. The result so obtained is used to construct mappings between two Lagrangian descriptions of a classical color-charged spinning particle, one of which possesses local supersymmetry, and the other not. It is shown that in order for the mappings to be one-to-one it is necessary to add new additional terms to the Lagrangian without supersymmetry, obtained within the framework of the semiclassical approximation of the Dirac operator with supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Markov, A. A. Shishmarev, Russ. Phys. J., 55, No. 11, 1351–1361 (2013).

    Article  MathSciNet  Google Scholar 

  2. Yu. A. Markov and M. A. Markova, Nucl. Phys., A784, No. 1–4, 443–514 (2007).

    Article  ADS  Google Scholar 

  3. Yu. A. Markov, M. A. Markova, and A. N. Vall, Int. J. Mod. Phys., A25, No. 4, 685–776 (2010).

    Article  ADS  Google Scholar 

  4. Yu. A. Markov, M. A. Markova, and A. A. Shishmarev, J. Phys., G37, No. 10, 105001(25) (2010).

    ADS  Google Scholar 

  5. F. A. Berezin and M. S. Marinov, Ann. Phys. (N.Y.), 104, No. 2, 336–362 (1977).

    Article  ADS  MATH  Google Scholar 

  6. A. Barducci, R. Casalbuoni, and L. Lusanna, Nuovo Cim., A35, No. 3, 377– 399 (1976); Nucl. Phys., B124, No. 1–2, 93–108 (1977).

  7. L. Brink, S. Deser, B. Zumino, et al., Phys. Lett., B64, No. 4, 435–438 (1976); L. Brink, P. Di Vecchia, and P. S. Howe, Nucl. Phys., B118, Nos. 1–2, 76–94 (1977).

  8. A. P. Balachandran, P. Salomonson, B. Skagerstam, and J. Winnberg, Phys. Rev., D15, No. 8, 2308–2317 (1977).

    ADS  Google Scholar 

  9. N.V. Borisov and P. P. Kulish, Teor. Mat. Fiz., 51, No. 3, 335–343 (1982).

    Article  MathSciNet  Google Scholar 

  10. M. J. Strassler, Nucl. Phys., B385, Nos. 1–2, 145–184 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. D. D’Hoker and D. G. Gagne, Nucl. Phys., B467, Nos. 1–2, 272–296; 297–312 (1996).

  12. P. Di Vecchia and F. Ravndal, Phys. Lett., A73, Nos. 5–6, 371–373 (1979).

    Article  ADS  Google Scholar 

  13. F. Ravndal, Phys. Rev., D21, No. 10, 2823–2832 (1980).

    ADS  MathSciNet  Google Scholar 

  14. E. S. Fradkin and D. M. Gitman, Phys. Rev., D44, No. 10, 3230–3236 (1991).

    ADS  MathSciNet  Google Scholar 

  15. J. W. Van Holten, Nucl. Phys., B457, No. 1–2, 375–407 (1995).

    Article  ADS  Google Scholar 

  16. D. Friedan and P. Windey, Nucl. Phys., B235, No. 3, 395–416 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Thaller, The Dirac Equation, Springer Verlag, Berlin (1992).

    Book  Google Scholar 

  18. W. Pauli, Helv. Phys. Acta., 5, No. 3, 179–199 (1932).

    Google Scholar 

  19. J. Bolte and S. Keppeler, Ann. Phys., 274, No. 1, 125–162 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. Fock, Phys. Z. Sowjetunion, 12, 404–425 (1937).

    Google Scholar 

  21. A. I. Akhiezer and V. B. Berestetskii, Elements of Quantum Electrodynamics, Oldbourne Press, London (1962).

    MATH  Google Scholar 

  22. H. Arodz, Phys. Lett., B116, No. 4, 251–254 (1982); Acta Phys. Polonica, B13, No. 7, 519–537 (1982).

  23. H. Arodz, Phys. Lett., B116, No. 4, 255–258 (1982); Acta Phys. Polonica, B14, No. 1, 13–21 (1983).

  24. T. Guhr and S. Keppeler, Ann. Phys., 322, No. 2, 287–314 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. V. V. Belov and M. F. Kondrat’eva, Teor. Mat. Fiz., 92, No. 1, 41–61 (1992).

    Article  MathSciNet  Google Scholar 

  26. V. G. Bagrov, V. V. Belov, and A. Yu. Trifonov, Semiclassical Trajectory – Coherent Approximation in Quantum Mechanics. II. High-Order Corrections to the Dirac Operators in an External Electromagnetic Field, arXiv:quant-ph/9806017v1.

  27. D. P. Sorokin, V. I. Tkach, D. V. Volkov, and A. A. Zheltukhin, Phys. Lett., B216, Nos. 3–4, 302–306 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Markov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 105–111, August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, Y.A., Markova, M.A. WKB Approxiation of the Dirac Equation with a Supersymmetric Extension. Russ Phys J 58, 1151–1159 (2015). https://doi.org/10.1007/s11182-015-0625-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0625-3

Keywords

Navigation