Skip to main content
Log in

Temperature Dependence of the Magnetization of the Ni52Mn24Ga24 Alloy in Various Structural States

  • Published:
Russian Physics Journal Aims and scope

Results

are presented of a study of the temperature dependence of the magnetization σ(Т) of the polycrystalline Ni52Mn24Ga24 alloy in various structural states: in the initial coarse-grained state, after severe plastic deformation by high pressure torsion, and after stepped annealing of the deformed specimen at temperatures from 200 to 700°С for 30 min. As a study of the σ(Т) curve shows, in an alloy possessing a coarse-grained initial structure, a martensitic phase transition and a magnetic phase transition are observed in the room temperature interval. The martensitic transformation takes place in the ferromagnetic state of the alloy. This transformation is accompanied by an abrupt lowering of the magnetization of the material, associated with a lowering of the symmetry of the crystalline lattice and a high value of the magnetocrystalline anisotropy constant of the alloy in the martensitic phase. It is shown that as a result of plastic deformation there takes place a destruction of ferromagnetic order and a suppression of the martensitic transformation. Consecutive annealing after deformation leads to a gradual recovery of ferromagnetic order and growth of the magnetization of the material. Recovery of the martensitic transformation begins to be manifested only after annealing of the alloy at a temperature of 500°С, when the mean grain size in the recrystallized structure reaches a value around 1 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ullakko, J. K. Huang, C. Kantner, et al., Appl. Phys. Lett., 69, No. 13, 1966–1968 (1996).

    Article  ADS  Google Scholar 

  2. W. H. Wang, G. H. Wu, J. L. Chen, et al., Appl. Phys. Lett., 77, No. 20, 3245– 3247 (2000).

    Article  ADS  Google Scholar 

  3. Kh. Ya. Mulyukov and I. I. Musabirov, Tech. Phys. The Russian J. Appl. Phys., 53, No. 6, 802–803 (2008)

    Google Scholar 

  4. I. I. Musabirov, Kh. Ya. Mulyukov, V. V. Koledov, and V. G. Shavrov, Tech. Phys. The Russian J. Appl. Phys., 56, No. 3, 423–426 (2011)

    Google Scholar 

  5. Kh. Ya. Mulyukov, I. I. Musabirov, and A. V. Mashirov, Pis’ma Mater., 2, No. 4, 194–197 (2012)

    Google Scholar 

  6. V. D. Buchelnikov, M. O. Drobosyuk, E. A. Smyshlyaev, et al., Solid State Phenomena, 168–169, 165–168 (2011).

    Google Scholar 

  7. V. A. Chernenko, J. M. Barandiaran, J. R. Fernandez, et al., J. Magn. Magn. Mater., 324, No. 21, 3519–3523 (2012).

    Article  ADS  Google Scholar 

  8. F. Albertini, L. Morellon, P. A. Algarabel, et al., J. Appl. Phys., 89, No. 10, 5614–5617 (2001).

    Article  ADS  Google Scholar 

  9. R. Kh. Khisamov, I. M. Safarov, R. R. Mulyukov, et al., Zh. Tekh. Fiz., 81, No. 11, 122–124 (2011).

    Google Scholar 

  10. I. M. Safarov, R. M. Galeev, S. N. Sergeev, and A. V. Korznikov, Pis’ma Mater., 4, No. 1, 55–58 (2014).

    Google Scholar 

  11. R. R. Mulyukov, A. A. Nazarov, and R. M. Imaev, Russ. Phys. J., 52, No. 5, 492–504 (2008).

    Article  Google Scholar 

  12. E. V. Avtokratova, O. E. Mukhametdinova, O. Sh. Sitdikov, et al., Lett. Mater., 4, No. 2, 93–95 (2014).

    Google Scholar 

  13. R. V. Safiullin, A. A. Kruglov, A. K. Akhunova, et al., Materialwissenschaft und Werkstofftechnik, 43, No. 9, 786–788 (2012).

    Article  Google Scholar 

  14. Yu. A. Baimova, S. V. Dmitriev, and A. A. Nazarov, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 3/2, 14–18 (2010).

    Google Scholar 

  15. I. I. Musabirov, I. M. Safarov, R. R. Mulyukov, et al., Lett. Mater., 4, No. 4, 265–268 (2014).

  16. I. I. Musabirov, I. M. Safarov, I. Z. Sharipov, et al., Zh. Radioelektron., 1, 1–14 (2015).

    Google Scholar 

  17. R. N. Imashev, Kh. Ya. Mulyukov, V. V. Koledov, and V. G. Shavrov, J. Phys.: Condens. Matter., 17, 2129–2135 (2005).

  18. N. I. Kourov, V. G. Pushin, A. V. Korolev, et al., Fiz. Tverd. Tela, 53, No. 1, 89–96 (2011).

    Google Scholar 

  19. I. Z. Sharipov, R. R. Mulyukov, and Kh. Ya. Mulyukov, Fiz. Met. Metalloved., 95, No. 1, 47 (2003)

    Google Scholar 

  20. Kh. Ya. Mulyukov and I. Z. Sharipov, Pis’ma Mater., 2, No. 4, 191–193 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Musabirov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 5–9, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musabirov, I.I., Sharipov, I.Z. & Mulyukov, R.R. Temperature Dependence of the Magnetization of the Ni52Mn24Ga24 Alloy in Various Structural States. Russ Phys J 58, 745–749 (2015). https://doi.org/10.1007/s11182-015-0561-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0561-2

Keywords

Navigation