Skip to main content
Log in

New sterically hindered disubstituted imine derivatives of (thia)calix[4]arenes bearing bulky tert-butyl groups at the lower rim: synthesis, structures, and complexation ability toward CoII and NiII cations in solution

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

New macrocyclic Schiff bases, lower rim disubstituted imine derivatives of thia- and calix[4]arenes 7 and 8 adopted in a cone stereoisomeric conformation, bearing two tert-butyl substituents grafted to iminophenol coordinating sites, and containing a spacer composed of two methylene bridges were synthesized. The prepared compounds were characterized by a complex of physicochemical methods in solution (1H/13C NMR spectroscopy, MALDI TOF mass spectrometry) and in the crystalline phase (IR spectroscopy, single-crystal X-ray diffraction (XRD)). In crystals calix[4]arene 7 forms a solvate in which acetonitrile or methanol molecules are included into the macrocycle cavity, whereas the crystals of thiacalix[4]arene 8 contain no solvent molecules. The difference in the conformational behavior of the macrocyclic platform was evidenced when comparing the crystal structures of calix[4]arene 7 and thiacalix[4]arene 8. The stoichiometry and the logarithm and stability constant values of the corresponding complexes of the synthesized macrocyclic Schiff bases with 3d-metal cations (CoII, NiII) in solution were determined using spectrophotometry titration. When interacting with CoII cations, compound 7 forms complexes with stoichiometry Lig: M = 1: 1 and 1: 2 (Lig is ligand, and M is metal). In the case of compound 8, complexes with the stoichiometry Lig: M = 1: 4, as well as 1: 2, are observed, which presumably indicates the involvement of “soft” sulfur atoms in the interaction with the metal cations. The replacement of CoII cations by NiII resulted in the formation in the solution of complexes with the stoichiometry Lig: M = 2: 1, 1: 1 and Lig: M = 1: 1, 1: 2 for compounds 7 and 8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Zabala-Lekuona, J. Manuel Seco, E. Colacio, Coord. Chem. Rev., 2021, 441, 213984; DOI: https://doi.org/10.1016/j.ccr.2021.213984.

    Article  CAS  Google Scholar 

  2. E. Moreno-Pineda, W. Wernsdorfer, Nat. Rev. Phys., 2021, 3, 645; DOI: https://doi.org/10.1038/s42254-021-00340-3.

    Article  CAS  Google Scholar 

  3. S. M. Aldoshin, D. V. Korchagin, A. V. Palii, B. S. Tsukerblat, Pure Appl. Chem., 2017, 89, 1119; DOI: https://doi.org/10.1515/pac-2017-0103.

    Article  CAS  Google Scholar 

  4. R. A. Layfield, Organometallics, 2014, 33, 1084; DOI: https://doi.org/10.1021/om401107f.

    Article  CAS  Google Scholar 

  5. D. Maniaki, E. Pilichos, S. P. Perlepes, Front. Chem., 2018, 6, 461; DOI: https://doi.org/10.3389/fchem.2018.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. M. Frost, K. L. M. Harrimana, M. Murugesu, Chem. Sci., 2016, 7, 2470; DOI: https://doi.org/10.1039/C5SC03224E.

    Article  CAS  PubMed  Google Scholar 

  7. J. Long, A. O. Tolpygin, D. M. Lyubov, N. Y. Rad’kova, A. V. Cherkasov, Y. V. Nelyubina, Y. Guari, J. Larionova, A. A. Trifonov, Dalton Trans., 2021, 50, 8487; DOI: https://doi.org/10.1039/D1DT01319J.

    Article  CAS  PubMed  Google Scholar 

  8. A. K. Matyukhina, E. N. Zorina-Tikhonova, A. S. Goloveshkin, K. A. Babeshkin, N. N. Efimov, M. A. Kiskin, I. L. Eremenko, Molecules, 2022, 27, 6537; DOI: https://doi.org/10.3390/molecules27196537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. A. Nikolaevskii, D. S. Yambulatov, J. K. Voronina, S. N. Melnikov, K. A. Babeshkin, N. N. Efimov, A. S. Goloveshkin, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Chemistry Select, 2020, 5, 12829; DOI: https://doi.org/10.1002/slct.202002982.

    CAS  Google Scholar 

  10. A. G. Maryasov, M. K. Bowman, M. V. Fedin, S. L. Veber, Materials, 2019, 12, 3865; DOI: https://doi.org/10.3390/ma12233865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Nehrkorn, I. A. Valuev, M. A. Kiskin, A. S. Bogomyakov, E. A. Suturina, A. M. Sheveleva, V. I. Ovcharenko, K. Holldack, C. Herrmann, M. V. Fedin, A. Schnegg, S. L. Veber, J. Mater. Chem. C, 2021, 9, 9446; DOI: https://doi.org/10.1039/D1TC01105G.

    Article  CAS  Google Scholar 

  12. V. V. Novikov, A. A. Pavlov, Y. V. Nelyubina, M.-E. Boulon, O. A. Varzatskii, Y. Z. Voloshin, R. E. P. Winpenny, J. Am. Chem. Soc., 2015, 137, 9792; DOI: https://doi.org/10.1021/jacs.5b05739.

    Article  CAS  PubMed  Google Scholar 

  13. C. D. Gutsche, M. Iqbal, D. Stewart, J. Org. Chem., 1986, 51, 742; DOI: https://doi.org/10.1021/jo00355a033.

    Article  CAS  Google Scholar 

  14. N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takeya, S. Miyanari, T. Miyashi, S. Miyano, Tetrahedron, 2000, 56, 1437; DOI: https://doi.org/10.1016/S0040-4020(00)00030-2.

    Article  CAS  Google Scholar 

  15. A. Ovsyannikov, S. Solovieva, I. Antipin, S. Ferlay, Coord. Chem. Rev., 2017, 352, 151; DOI: https://doi.org/10.1016/j.ccr.2017.09.004.

    Article  CAS  Google Scholar 

  16. A. S. Ovsyannikov, I. V. Khariushin, S. E. Solovieva, I. S. Antipin, H. Komiya, N. Marets, H. Tanaka, H. Ohmagari, M. Hasegawa, J. J. Zakrzewski, S. Chorazy, N. Kyritsakas, M. W. Hosseini, S. Ferlay, RSC Adv., 2020, 10, 11755; DOI: https://doi.org/10.1039/D0RA01263G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Hang, Y. Bi, Dalton Trans., 2021, 50, 3749; DOI: https://doi.org/10.1039/D0DT04233A.

    Article  CAS  PubMed  Google Scholar 

  18. R. O. Fuller, G. A. Koutsantonis, M. I. Ogden, Coord. Chem. Rev., 2020, 402, 213066; DOI: https://doi.org/10.1016/j.ccr.2019.213066.

    Article  CAS  Google Scholar 

  19. S. M. Aldoshin, I. S. Antipin, V. I. Ovcharenko, S. E. Solov’eva, A. S. Bogomyakov, D. V. Korchagin, G. V. Shilov, E. A. Yur’eva, F. B. Mushenok, K. V. Bozhenko, A. N. Utenyshev, Russ. Chem. Bull., 2013, 62, 536; DOI: https://doi.org/10.1007/s11172-013-0074-5.

    Article  CAS  Google Scholar 

  20. S. M. Taylor, G. Karotsis, R. D. McIntosh, S. Kennedy, S. J. Teat, C. M. Beavers, W. Wernsdorfer, S. Piligkos, S. J. Dalgarno, E. K. Brechin, Chem. Eur. J., 2011, 17, 7521; DOI: https://doi.org/10.1002/chem.201003327.

    Article  CAS  PubMed  Google Scholar 

  21. J. C. Pessoa, I. Correia, Coord. Chem. Rev., 2019, 388, 227; DOI: https://doi.org/10.1016/j.ccr.2019.02.035.

    Article  CAS  Google Scholar 

  22. A. Marius, Dalton Trans., 2015, 44, 16633–16653; DOI: https://doi.org/10.1039/C5DT02661J.

    Article  Google Scholar 

  23. A. S. Burlov, S. A. Nikolaevskii, A. S. Bogomyakov, I. S. Vasil’chenko, Yu. V. Koshchienko, V. G. Vlasenko, A. I. Uraev, D. A. Garnovskii, E. V. Sennikova, G. S. Borodkin, A. D. Garnovskii, V. I. Minkin, Russ. J. Coord. Chem., 2009, 35, 486; DOI: https://doi.org/10.1134/S1070328409070045.

    Article  CAS  Google Scholar 

  24. P. Padnya, K. Shibaeva, M. Arsenyev, S. Baryshnikova, O. Terenteva, I. Shiabiev, A. Khannanov, A. Boldyrev, A. Gerasimov, D. Grishaev, Y. Shtyrlin, I. Stoikov, Molecules, 2021, 26, 2334; DOI: https://doi.org/10.3390/molecules26082334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N. N. Kharabayev, A. G. Starikov, V. I. Minkin, Russ. Chem. Bull., 2022, 71, 934; DOI: https://doi.org/10.1007/s11172-022-3493-3.

    Article  CAS  Google Scholar 

  26. C. Laube, J. A. Taut, J. Kretzschmar, S. Zahn, W. Knolle, S. Ullman, A. Kahnt, B. Kersting, B. Abel, Inorg. Chem. Front., 2020, 7, 4333; DOI: https://doi.org/10.1039/D0QI00980F.

    Article  CAS  Google Scholar 

  27. M. Dey, C. P. Rao, P. Guionneau, Inorg. Chem. Commun., 2005, 8, 998; DOI: https://doi.org/10.1016/j.inoche.2005.08.002.

    Article  CAS  Google Scholar 

  28. P. Kumar Sahu, R. Kharel, S. Shome, S. Goswami, S. Konar, Coord. Chem. Rev., 2023, 475, 214871; DOI: https://doi.org/10.1016/j.ccr.2022.214871.

    Article  CAS  Google Scholar 

  29. A. A. Pavlov, D. Y. Aleshin, S. A. Savkina, A. S. Belov, N. N. Efimov, J. Nehrkorn, M. Ozerov, Y. Z. Voloshin, Y. V. Nelyubina, V. V. Novikov, ChemPhysChem, 2019, 20, 1001; DOI: https://doi.org/10.1002/cphc.201900219.

    Article  CAS  PubMed  Google Scholar 

  30. A. S. Belov, S. A. Belova, N. N. Efimov, V. V. Zlobina, V. V. Novikov, Y. V. Nelyubina, Y. V. Zubavichus, Y. Z. Voloshin, A. A. Pavlov, Dalton Trans., 2023, 52, 2928; DOI: https://doi.org/10.1039/D2DT04073E.

    Article  CAS  PubMed  Google Scholar 

  31. N. Plyuta, S. Petrusenko, V. N. Kokozay, T. Cauchy, F. Lloret, M. Julve, J. Cano, N. Avarvari, Dalton Trans., 2022, 51, 4760; DOI: https://doi.org/10.1039/D1DT04274B.

    Article  CAS  PubMed  Google Scholar 

  32. R. Biswas, Y. Ida, M. L. Baker, S. Biswas, P. Kar, H. Nojiri, T. Ishida, A. Ghosh, Chem. — A Eur. J., 2013, 19, 3943; DOI: https://doi.org/10.1002/chem.201202795.

    Article  CAS  Google Scholar 

  33. R. Herchel, I. Nemec, M. Machata, Z. Trávníček, Dalton Trans., 2016, 45, 18622; DOI: https://doi.org/10.1039/C6DT03520E.

    Article  CAS  PubMed  Google Scholar 

  34. H. G. Becker, W. Berger, G. Domschke, ORGANIKUM. Organisch-chemisches Grundpraktikum, Deutscher Verlag der Wissenschaften, Berlin, 1965.

    Google Scholar 

  35. J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, C. M. Zepp, J. Org. Chem., 1994, 59, 1939; DOI: https://doi.org/10.1021/jo00086a062.

    Article  CAS  Google Scholar 

  36. A. P. Luk’yanenko, E. A. Alekseeva, S. S. Basok, A. V. Mazepa, A. I. Gren’, Russ. J. Org. Chem., 2011, 47, 527; DOI: https://doi.org/10.1134/S1070428011040105.

    Article  Google Scholar 

  37. V. Bhalla, M. Kumar, T. Hattori, S. Miyano, Tetrahedron, 2004, 60, 5881; DOI: https://doi.org/10.1016/j.tet.2004.05.035.

    Article  CAS  Google Scholar 

  38. APEX3(Version 2018.7-2), Bruker AXS Inc., Madison, Wisconsin, USA, 2016.

  39. G. Sheldrick, SADABS, Program for Empirical X-ray Absorption Correction, Bruker-Nonius, Göttingen, Germany, 2004.

    Google Scholar 

  40. G. Sheldrick, SHELXTL v.6.12, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2000.

    Google Scholar 

  41. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837; DOI: https://doi.org/10.1107/S0021889899006020.

    Article  CAS  Google Scholar 

  42. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. Sect. B Struct. Sci., 2002, 58, 389; DOI: https://doi.org/10.1107/S0108768102003324.

    Article  Google Scholar 

  43. P. Gans, A. Sabatini, A. Vacca, HypSpec2014; http://www.hyperquad.co.uk, 2008.

  44. M. Zhao, J. Lv, D.-S. Guo, RSC Adv., 2017, 7, 10021; DOI: https://doi.org/10.1039/C6RA25616C.

    Article  CAS  Google Scholar 

  45. S. E. Solovieva, V. A. Burilov, I. S. Antipin, Macroheterocycles, 2017, 10, 134; DOI: https://doi.org/10.6060/mhc170512a.

    Article  CAS  Google Scholar 

  46. I. I. Stoikov, A. A. Yantemirova, R. V. Nosov, I. Kh. Rizvanov, A. R. Julmetov, V. V. Klochkov, I. S. Antipin, A. I. Konovalov, I. Zharov, Org. Biomol. Chem., 2011, 9, 3225; DOI: https://doi.org/10.1039/C0OB01251C.

    Article  CAS  PubMed  Google Scholar 

  47. A. A. Muravev, A. I. Laishevtsev, F. B. Galieva, O. B. Bazanova, I. Kh. Rizvanov, A. Korany, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, Macroheterocycles, 2017, 10, 203; DOI: https://doi.org/10.6060/mhc170304m.

    Article  CAS  Google Scholar 

  48. V. A. Burilov, R. N. Belov, R. I. Nugmanov, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2022, 71, 1497; DOI: https://doi.org/10.1007/s11172-022-3556-5.

    Article  CAS  Google Scholar 

  49. A. Ovsyannikov, M. N. Lang, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini, Dalton Trans., 2013, 42, 116–126; DOI: https://doi.org/10.1039/C2DT31937C.

    Article  CAS  PubMed  Google Scholar 

  50. A. S. Ovsyannikov, N. A. Epifanova, E. V. Popova, N. Kyritsakas, S. Ferlay, M. W. Hosseini, Sh. K. Latypov, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, Macroheterocycles, 2014, 7, 189; DOI: https://doi.org/10.6060/mhc140273s.

    Article  Google Scholar 

  51. A. S. Ovsyannikov, M. H. Noamane, R. Abidi, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini, CrystEngComm, 2016, 18, 691; DOI: https://doi.org/10.1039/C5CE02310F.

    Article  CAS  Google Scholar 

  52. A. S. Ovsyannikov, S. Ferlay, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, N. Kyritsakas, M. W. Hosseini, Russ. Chem. Bull., 2015, 64, 1955; DOI: https://doi.org/10.1007/s11172-015-1099-8.

    Article  CAS  Google Scholar 

  53. M. V. Kniazeva, A. S. Ovsyannikov, D. R. Islamov, A. I. Samigullina, A. T. Gubaidullin, P. V. Dorovatovskii, S. E. Solovieva, I. S. Antipin, S. Ferlay, CrystEngComm, 2020, 22, 7693; DOI: https://doi.org/10.1039/D0CE01232G.

    Article  CAS  Google Scholar 

  54. J. Olguin, V. Gomez-Vidal, E. Munoz, R. A. Toscano, I. Castillo, Inorg. Chem. Commun., 2006, 9, 1096; DOI: https://doi.org/10.1016/j.inoche.2006.07.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Collective Spectral Analytical Center of Physicochemical Research of Structure, Properties, and Composition of Substances and Materials at the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” for technical support of the conducted studies.

Funding

This work was financially supported by the Russian Science Foundation (Project No. 22-73-10139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ovsyannikov.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to the memory of Academician of the Russian Academy of Sciences A. I. Konovalov (1934—2021) on the occasion of his 90th anniversary.

Publisher’s Note. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 3, pp. 653–668, March, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnikova, I.V., Shutilov, I.D., Ovsyannikov, A.S. et al. New sterically hindered disubstituted imine derivatives of (thia)calix[4]arenes bearing bulky tert-butyl groups at the lower rim: synthesis, structures, and complexation ability toward CoII and NiII cations in solution. Russ Chem Bull 73, 653–668 (2024). https://doi.org/10.1007/s11172-024-4175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4175-0

Key words

Navigation