Skip to main content
Log in

Synthesis and structure of unsymmetrical 1,1′-disubstituted cyclopropane-containing azinylferrocenes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A simple and convenient approach to the synthesis of the derivatives of unsymmetrical 1,1′-disubstituted cyclopropane-containing azinylferrocenes was suggested. A regioselective method for the Friedel—Crafts acylation of monoazinyl-substituted ferrocenes with a 4-chlorobutyryl chloride—AlCl3 mixture in CH2Cl2 under an inert atmosphere was elaborated. The acylation product on treatment with ButOK in DMSO readily underwent γ-elimination of HCl to give the corresponding cyclopropanes. The structures of the synthesized compounds were confirmed by IR spectroscopy, 1H and 13C spectroscopy, mass spectrometry, and X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Mizuno, K. Matsui, S. Shuto, Chem. Eur. J., 2017, 23, 14394; DOI: https://doi.org/10.1002/chem.201702119.

    Article  CAS  PubMed  Google Scholar 

  2. P. Khakbaz, J. B. Klauda, Chem. Phys. Lipids, 2015, 192, 12; DOI: https://doi.org/10.1016/j.chemphyslip.2015.08.003.

    Article  CAS  PubMed  Google Scholar 

  3. Z. Yazdiniapour, M. H. Sohrabi, N. Motinia, B. Zolfaghari, P. Mehdifar, M. Ghanadian, V. Lanzotti, Metabolites, 2023, 13, 225; DOI: https://doi.org/10.3390/metabo13020225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Chen, Y. Li, J. Cao, J. Huang, C. Jiang, X. Dai, G. Huang, Nat. Prod. Res., 2022, 36, 2386; DOI: https://doi.org/10.1080/14786419.2020.1827405.

    Article  CAS  PubMed  Google Scholar 

  5. A. P. Molchanov, M. M. Efremova, M. A. Kuznetsov, Russ. Chem. Bull., 2022, 71, 620; DOI: https://doi.org/10.1007/s11172-022-3460-z.

    Article  CAS  Google Scholar 

  6. I. A. Novakov, A. S. Babushkin, A. S. Yablokov, M. B. Nawrozkij, O. V. Vostrikova, D. S. Shejkin, A. S. Mkrtchyan, K. V. Balakin, Russ. Chem. Bull., 2018, 67, 395; DOI: https://doi.org/10.1007/s11172-018-2087-6.

    Article  CAS  Google Scholar 

  7. D. M. Iturbide, E. I. Klimova, M. Martinez Garcia, T. Klimova, J. M. Martinez Mendoza, C. Alvarez Toledano, A. Ruben Toscano, L. Ruiz Ramirez, J. Organomet. Chem., 2002, 645, 183; DOI: https://doi.org/10.1016/S0022-328X(01)01354-7.

    Article  Google Scholar 

  8. D. A. Denisov, R. A. Novikov, Yu. V. Tomilov, Russ. Chem. Bull., 2021, 70, 1568; DOI: https://doi.org/10.1007/s11172-021-3253-9.

    Article  CAS  Google Scholar 

  9. N. R. O’Connor, J. L. Wood, B. M. Stoltz, Isr. J. Chem., 2016, 56, 431; DOI: https://doi.org/10.1002/ijch.201500089.

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. E. Vartanova, A. Yu. Plodukhin, M. A. Boichenko, V. V. Shorokhov, S. S. Zhokhov, I. V. Trushkov, O. A. Ivanova, Russ. Chem. Bull., 2022, 71, 2431; DOI: https://doi.org/10.1007/s11172-022-3671-3.

    Article  CAS  Google Scholar 

  11. M. Bao, M. P. Doyle, Org. Lett., 2023, 25, 3029; DOI: https://doi.org/10.1021/acs.orglett.3c00831.

    Article  CAS  PubMed  Google Scholar 

  12. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2021, 70, 2051; DOI: https://doi.org/10.1007/s11172-021-3318-9.

    Article  CAS  Google Scholar 

  13. O. A. Ivanova, I. V. Trushkov, Chem. Rec., 2019, 19, 1; DOI: https://doi.org/10.1002/tcr.201800166.

    Article  Google Scholar 

  14. Y.-H. Yang, M. A. Shi, Org. Lett., 2006, 8, 1709; DOI: https://doi.org/10.1021/ol060415a.

    Article  CAS  PubMed  Google Scholar 

  15. M. Shi, X.-Y. Tang, Y.-H. Yang, J. Org. Chem., 2008, 73, 5311; DOI: https://doi.org/10.1021/jo800608h.

    Article  CAS  PubMed  Google Scholar 

  16. D. Zheng, R. Zhang, W. Chen, P. Yang, G. Yang, Z. Chai, Org. Lett., 2023, 25, 2577; DOI: https://doi.org/10.1021/acs.orglett.3c00511.

    Article  CAS  PubMed  Google Scholar 

  17. Z. Mao, H. Qu, Y. Zhao, X. Lin, Chem. Commun., 2012, 48, 9927; DOI: https://doi.org/10.1039/C2CC35235D.

    Article  CAS  Google Scholar 

  18. B. Audic, N. Cramer, Org. Lett., 2020, 22, 5030; DOI: https://doi.org/10.1021/acs.orglett.0c01606.

    Article  CAS  PubMed  Google Scholar 

  19. N. Kuramoto, Y. Shishido, Polymer, 1998, 39, 669; DOI: https://doi.org/10.1016/S0032-3861(97)00334-0.

    Article  CAS  Google Scholar 

  20. L. V. Snegur, Inorganics, 2022, 10, 226; DOI: https://doi.org/10.3390/inorganics10120226.

    Article  CAS  Google Scholar 

  21. B. Sharma, V. Kumar, J. Med. Chem., 2021, 64, 16865; DOI: https://doi.org/10.1021/acs.jmedchem.1c00390.

    Article  CAS  PubMed  Google Scholar 

  22. A. Singh, I. Lumb, V. Mehra, V. Kumar, Dalton Trans., 2019, 48, 2840; DOI: https://doi.org/10.1039/C8DT03440K.

    Article  CAS  PubMed  Google Scholar 

  23. A. A. Musikhina, P. O. Serebrennikova, O. N. Zabelina, I. A. Utepova, O. N. Chupakhin, Inorganics, 2022, 10, 152; DOI: https://doi.org/10.3390/inorganics10100152.

    Article  CAS  Google Scholar 

  24. K. Yoshida, R. Yasue, Chem. Eur. J., 2018, 24, 18575; DOI: https://doi.org/10.1002/chem.201803903.

    Article  CAS  PubMed  Google Scholar 

  25. O. Bernardo, S. González-Pelayo, L. A. López, Eur. J. Inorg. Chem., 2022, 2022, e202100911; DOI: https://doi.org/10.1002/ejic.202100911.

    Article  CAS  Google Scholar 

  26. R. P. Shekurov, L. H. Gilmanova, A. A. Zagidullin, V. A. Miluykov, Russ. Chem. Bull., 2021, 70, 1415; DOI: https://doi.org/10.1007/s11172-021-3233-0.

    Article  CAS  Google Scholar 

  27. Z. Huang, H. Yu, L. Wang, X. Liu, T. Lin, F. Haq, S. Z. Vatsadze, D. A. Lemenovskiy, Coord. Chem. Rev., 2021, 430, 213737; DOI: https://doi.org/10.1016/j.ccr.2020.213737.

    Article  CAS  Google Scholar 

  28. B. N. Jha, N. Singh, A. N. Sahay, A. Raghuvanshi, J. Electron. Mater., 2021, 50, 6073; DOI: https://doi.org/10.1007/s11664-021-09176-0.

    Article  CAS  Google Scholar 

  29. E. I. Klimova, T. Klimova, L. Ruíz Ramírez, G. M. Martinez, T. C. Alvarez, P. G. Espinosa, R. A. Toscano, J. Organomet. Chem., 1997, 545–546, 191; DOI: https://doi.org/10.1016/S0022-328X(97)00371-9.

    Article  Google Scholar 

  30. Yu. V. Tomilov, L. G. Menchikov, R. A. Novikov, O. A. Ivanova, I. V. Trushkov, Russ. Chem. Rev., 2018, 87, 201; DOI: https://doi.org/10.1070/RCR4787.

    Article  CAS  Google Scholar 

  31. O. G. Kulinkovich, Cyclopropanes in Organic Synthesis, John Wiley & Sons, Inc., Hoboken, 2015, 418 pp.

    Book  Google Scholar 

  32. X. Zhang, C. Tian, Z. Wang, P. Sivaguru, S. P. Nolan, X. Bi, ACS Catal., 2021, 11, 8527; DOI: https://doi.org/10.1021/acscatal.1c01483.

    Article  CAS  Google Scholar 

  33. X.-Y. Chen, F.-C. Gao, P.-F. Ning, Y. Wei, K. Hong, Angew. Chem., Int. Ed., 2023, 62, e202302638; DOI: https://doi.org/10.1002/anie.202302638.

    Article  CAS  Google Scholar 

  34. A.-H. Li, L.-X. Dai, Chem. Rev., 1997, 97, 2341; DOI: https://doi.org/10.1021/cr960411r.

    Article  CAS  PubMed  Google Scholar 

  35. W. Huang, L.-L. Wang, J. Chem. Res., 2013, 37, 380; DOI: https://doi.org/10.3184/174751913X13692098347208.

    Article  CAS  Google Scholar 

  36. S. Saha, B. Debnath, K. Talukdar, P. Karjee, S. Mandal, T. Punniyamurthy, Org. Lett., 2023, 25, 3352; DOI: https://doi.org/10.1021/acs.orglett.3c00650.

    Article  CAS  PubMed  Google Scholar 

  37. K. E. Berger, R. J. Martinez, J. Zhou, C. Uyeda, J. Am. Chem. Soc., 2023, 145, 9441; DOI: https://doi.org/10.1021/jacs.3c01949.

    Article  CAS  PubMed  Google Scholar 

  38. N. Jeremias, M. T. Peschel, C. Jaschke, R. de Vivie-Riedle, T. Bach, J. Org. Chem., 2023, 88, 6294; DOI: https://doi.org/10.1021/acs.joc.2c01156.

    Article  CAS  PubMed  Google Scholar 

  39. Z. časar, Synthesis, 2020, 52, 1315; DOI: https://doi.org/10.1055/s-0039-1690058.

    Article  Google Scholar 

  40. M. R. Sun, H. L. Li, M. Y. Ba, W. Cheng, H. L. Zhu, Y. T. Duan, Mini-Rev. Med. Chem., 2021, 21, 150; DOI: https://doi.org/10.2174/1389557520666200729161150.

    Article  CAS  PubMed  Google Scholar 

  41. J. Yin, X. Li, X. Wu, B. Chen, Z. Liu, Q. Song, Can. J. Chem., 2005, 83, 2140; DOI: https://doi.org/10.1139/v05-251.

    Article  CAS  Google Scholar 

  42. L. Shi, P. Wang, X. Liu, W. Liu, Y. Liang, Synthesis, 2004, 2004, 2342; DOI: https://doi.org/10.1055/s-2004-831176.

    Article  Google Scholar 

  43. D. Ilić, I. Damljanović, M. Vukićević, V. Kahlenberg, G. Laus, N. S. Radulović, R. D. Vukićević, Tetrahedron Lett., 2012, 53, 6018; DOI: https://doi.org/10.1016/j.tetlet.2012.08.102.

    Article  Google Scholar 

  44. W. M. Horspool, R. G. Sutherland, Chem. Commun. (London), 1966, 14, 456; DOI: https://doi.org/10.1039/C19660000456.

    Article  Google Scholar 

  45. G. W. Gokel, J. P. Shepherd, W. P. Weber, H. G. Boettger, J. L. Holwick, D. McAdoo, J. Org. Chem., 1973, 38, 1913; DOI: https://doi.org/10.1021/jo00950a027.

    Article  CAS  Google Scholar 

  46. W. M. Horspool, R. G. Sutherland, B. J. Thomson, J. Chem. Soc. C, 1971, 1558; DOI: https://doi.org/10.1039/J39710001558.

  47. A. N. Nesmeyanov, E. I. Klimova, Yu. T. Struchkov, V. G. Andrianov, V. N. Postnov, V. A. Sazonova, J. Organomet. Chem., 1979, 178, 343; DOI: https://doi.org/10.1016/S0022-328X(00)94223-2.

    Article  CAS  Google Scholar 

  48. O. N. Chupakhin, I. A. Utepova, I. S. Kovalev, V. L. Rusinov, Z. A. Starikova, Eur. J. Org. Chem., 2007, 5, 857; DOI: https://doi.org/10.1002/ejoc.200600821.

    Article  Google Scholar 

  49. A. A. Musikhina, I. A. Utepova, O. N. Chupakhin, A. I. Suvorova, E. Y. Zyryanova, Mendeleev Commun., 2020, 30, 209; DOI: https://doi.org/10.1016/j.mencom.2020.03.026.

    Article  CAS  Google Scholar 

  50. Y. Fort, P. Caubère, J. C. Gautier, J. C. Mondet, J. Organomet. Chem., 1993, 452, 111; DOI: https://doi.org/10.1016/0022-328X(93)83180-4.

    Article  CAS  Google Scholar 

  51. A. M. Borys, Organometallics, 2023, 42, 182; DOI: https://doi.org/10.1021/acs.organomet.2c00535.

    Article  CAS  Google Scholar 

  52. L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, The Chemical Society, London, 1965, 288 pp.

    Google Scholar 

  53. E. I. Klimova, M. M. Garcia, T. Klimova, C. A. Toledano, R. A. Toscano, L. R. Ramirez, J. Organomet. Chem., 2000, 598, 254; DOI: https://doi.org/10.1016/S0022-328X(99)00721-4.

    Article  CAS  Google Scholar 

  54. R. Martínez, D. J. Ramón, M. Yus, Tetrahedron, 2006, 62, 8988; DOI: https://doi.org/10.1016/j.tet.2006.07.013.

    Article  Google Scholar 

  55. C. Xu, X. Q. Hao, Z. Q. Xiao, Z. Q. Wang, X. E. Yuan, W. J. Fu, B.-M. Ji, M. P. Song, J. Org. Chem., 2013, 78, 8730; DOI: https://doi.org/10.1021/jo401421b.

    Article  CAS  PubMed  Google Scholar 

  56. H. M. Li, A. Q. Feng, Y. L. Song, X. H. Lou, Z. Kristallogr. — New Cryst. Struct., 2014, 229, 225–226; DOI: https://doi.org/10.1515/ncrs-2014-0113.

    CAS  Google Scholar 

  57. C. Xu, H. M. Li, Z. Q. Xiao, Z. Q. Wang, S. F. Tang, B.-M. Ji, X.-Q. Hao, M. P. Song, Dalton Trans., 2014, 43, 10235–10247; DOI: https://doi.org/10.1039/C4DT00833B.

    Article  CAS  PubMed  Google Scholar 

  58. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  60. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Program for Development of the Ural Federal University named after the first President of Russia B. N. Yeltsin in accordance with the Program of Strategic Development of Academic Leadership “Priority 2030”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Utepova or O. N. Chupakhin.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Based on the materials of the VII International Conference “Modern Synthetic Methodologies for Creating Drugs and Functional Materials” (MOSM 2023) dedicated to the 125th birth anniversary of Academician I. Ya. Postovsky (September 10–16, 2023, Yekaterinburg—Perm, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 12, pp. 2815–2824, December, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musikhina, A.A., Utepova, I.A., Zyryanova, E.Y. et al. Synthesis and structure of unsymmetrical 1,1′-disubstituted cyclopropane-containing azinylferrocenes. Russ Chem Bull 72, 2815–2824 (2023). https://doi.org/10.1007/s11172-023-4090-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4090-9

Key words

Navigation