Skip to main content
Log in

A new approach to the synthesis of azobenzenes based on the oxidative N—N coupling of anilines under the action of electrogenerated NiO(OH), NaOCl, and NaOBr

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The patterns of the reactions of anilines with NiO(OH), NaOCl, and NaOBr electro-generated in H2O and H2O—ButOH have been studied for the first time. It was found that NiO(OH) is efficient with respect to anilines with one donor (Me, OMe) or one weak acceptor (Cl, Br) substituent in the benzene ring, while NaOCl and NaOBr are more active towards anilines with one strong acceptor (CN, NO2) or several weak acceptor (Cl) substituents. Based on the results obtained, an approach has been proposed to the two-stage synthesis of a number of azobenzenes under mild conditions with a yield of up to 48%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, Weinheim, Wiley-VCH, 2003.

    Google Scholar 

  2. O. S. Bushuyev, A. Tomberg, T. FrišČić, C. J. Barrett, J. Am. Chem. Soc., 2013, 135, 12556; DOI: https://doi.org/10.1021/ja4063019.

    Article  CAS  PubMed  Google Scholar 

  3. G. A. Selivanova, Russ. Chem. Bull., 2021, 70, 213; DOI: https://doi.org/10.1007/s11172-021-3080-z.

    Article  CAS  Google Scholar 

  4. D. G. Slobodinyuk, A. N. Vasyanin, I. V. Lunegov, E. V. Sklyaeva, G. G. Abashev, Russ. Chem. Bull., 2022, 71, 341; DOI: https://doi.org/10.1007/s11172-022-3417-2.

    Article  CAS  Google Scholar 

  5. M. Banghart, K. Borges, E. Isacoff, D. Trauner, R. H. Kramer, Nat. Neurosci., 2004, 7, 1381; DOI: https://doi.org/10.1038/nn1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. A. Beharry, G. A. Woolley, Chem. Soc. Rev., 2011, 40, 4422; DOI: https://doi.org/10.1039/C1CS15023E.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Shima, J.-I. Matsuo, Tetrahedron Lett., 2016, 57, 4066; DOI: https://doi.org/10.1016/j.tetlet.2016.07.087.

    Article  CAS  Google Scholar 

  8. A. S. Soldatenko, N. F. Lazareva, Russ. Chem. Bull., 2021, 70, 158; DOI: https://doi.org/10.1007/s11172-021-3071-0.

    Article  CAS  Google Scholar 

  9. E. Merino, Chem. Soc. Rev., 2011, 40, 3835; DOI: https://doi.org/10.1039/C0CS00183J.

    Article  CAS  PubMed  Google Scholar 

  10. H. A. Dabbagh, A. Teimouri, A. N. Chermahini, Dyes Pigm., 2007, 73, 239; DOI: https://doi.org/10.1016/j.dyepig.2005.12.002.

    Article  CAS  Google Scholar 

  11. J. M. Birchall, R. N. Haszeldine, J. E. G. Kemp, J. Chem. Soc. C, 1970, 449; DOI: https://doi.org/10.1039/J39700000449.

  12. S. Farhadi, P. Zaringhadama, R. Z. Sahamiehb, Acta Chim. Slov., 2007, 54, 647.

    CAS  Google Scholar 

  13. C. Karunakaran, R. Venkataramanan, Chem. Pap., 2019, 73, 375; DOI: https://doi.org/10.1007/s11696-018-0599-z.

    Article  CAS  Google Scholar 

  14. S. Okumura, C.-H. Lin, Y. Takeda, S. Minakata, J. Org. Chem., 2013, 78, 12090; DOI: https://doi.org/10.1021/jo402120w.

    Article  CAS  PubMed  Google Scholar 

  15. A. Grirrane, A. Corma, H. Garcia, Nature Protocols, 2010, 5, 429.

    Article  CAS  PubMed  Google Scholar 

  16. C. Zhang, N. Jiao, Angew. Chem., 2010, 122, 6310; DOI: https://doi.org/10.1002/ange.201001651.

    Article  Google Scholar 

  17. S. Wawzonek, T. Mcintyre, J. Electrochem. Soc., 1967, 114, 1025; DOI: https://doi.org/10.1149/1.2424177.

    Article  CAS  Google Scholar 

  18. P. G. Desideri, L. Lepri, D. Heimler, J. Electroanal. Chem. Interface Chem., 1971, 32, 225; DOI: https://doi.org/10.1016/S0022-0728(71)80188-2.

    Article  CAS  Google Scholar 

  19. S. Wawzonek, T. Mcintyre, J. Electrochem. Soc., 1972, 119, 1350; DOI: https://doi.org/10.1149/1.2403994.

    Article  CAS  Google Scholar 

  20. B. V. Lyalin, V. L. Sigacheva, V. A. Kokorekin, V. A. Petrosyan, Tetrahedron Lett., 2018, 59, 2741; DOI: https://doi.org/10.1016/j.tetlet.2018.05.089.

    Article  CAS  Google Scholar 

  21. A. B. Sheremetev, B. V. Lyalin, A. M. Kozeev, N. V. Palysaeva, M. I. Struchkova, K. Y. Suponitsky, RSC Adv., 2015, 5, 37617; DOI: https://doi.org/10.1039/C5RA05726D.

    Article  CAS  Google Scholar 

  22. B. V. Lyalin, V. L. Sigacheva, B. I. Ugrak, V. A. Petrosyan, Russ. Chem. Bull., 2021, 70, 164; DOI: https://doi.org/10.1007/s11172-021-3072-z.

    Article  CAS  Google Scholar 

  23. B. V. Lyalin, V. L. Sigacheva, L. L. Fershtat, N. N. Makhova, V. A. Petrosyan, Mendeleev Commun., 2018, 28, 518; DOI: https://doi.org/10.1016/j.mencom.2018.09.023.

    Article  CAS  Google Scholar 

  24. B. V. Lyalin, V. A. Petrosyan, Russ. J. Electrochem., 2010, 46, 1199; DOI: https://doi.org/10.1134/s1023193510110017.

    Article  CAS  Google Scholar 

  25. Y. Matsuda, A. Shono, C. Iwakura, Y. Ohshiro, T. Agawa, H. Tamura, Bull. Chem. Soc. Jpn., 1971, 44, 2960.

    Article  CAS  Google Scholar 

  26. F. G. Bordwell, J. P. Cheng, J. Am. Chem. Soc., 1989, 111, 1792; DOI: https://doi.org/10.1021/ja00187a036.

    Article  CAS  Google Scholar 

  27. M. Jonsson, J. Lind, T. E. Eriksen, G. Merenyi, J. Am. Chem. Soc., 1994, 116, 1423; DOI: https://doi.org/10.1021/ja00083a030.

    Article  CAS  Google Scholar 

  28. X.-M. Zhang, F. G. Bordwell, J. Am. Chem. Soc., 1994, 116, 904; DOI: https://doi.org/10.1021/ja00082a010.

    Article  CAS  Google Scholar 

  29. B. V. Lyalin, V. A. Petrosyan, Russ. J. Electrochem., 1996, 32, 88.

    CAS  Google Scholar 

  30. D. S. Bhuvaneshwari, K. P. Elango, Int. J. Chem. Kinet., 2007, 39, 289; DOI: https://doi.org/10.1002/kin.20242.

    Article  CAS  Google Scholar 

  31. M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. Interfac. Chem., 1971, 31, 39; DOI: https://doi.org/10.1016/S0022-0728(71)80040-2.

    Article  CAS  Google Scholar 

  32. B. T. Bagmanov, Russ. J. Appl. Chem., 2009, 82, 1570; DOI: https://doi.org/10.1134/S1070427209090122.

    Article  CAS  Google Scholar 

  33. P. Kovacic, M. K. Lowery, K. W. Field, Chem. Rev., 1970, 70, 639; DOI: https://doi.org/10.1021/cr60268a002.

    Article  CAS  Google Scholar 

  34. R. C. Zawalski, P. Kovacic, J. Org. Chem., 1979, 44, 2130; DOI: https://doi.org/10.1021/jo01327a019.

    Article  CAS  Google Scholar 

  35. G. F. P. De Souza, T. W. Von Zuben, A. G. Salles, Tetrahedron Lett., 2018, 59, 3753; DOI: https://doi.org/10.1016/j.tetlet.2018.08.053.

    Article  CAS  Google Scholar 

  36. A. Antoine John, Q. Lin, J. Org. Chem., 2017, 82, 9873; DOI: https://doi.org/10.1021/acs.joc.7b01530.

    Article  CAS  PubMed  Google Scholar 

  37. J. Kaulen, H.-J. Schäfer, Tetrahedron, 1982, 38, 3299; DOI: https://doi.org/10.1016/0040-4020(82)80110-5.

    Article  CAS  Google Scholar 

  38. I. M. Kolthoff, R. Belcher. Volumetric Analysis, Vol. 3, Interscience Publishers, New York—London, 1957, 714 pp.

    Google Scholar 

  39. R. O. Hutchins, D. W. Lamson, L. Rua, C. Milewski, B. Maryanoff, J. Org. Chem., 1971, 36, 803; DOI: https://doi.org/10.1021/jo00805a015.

    Article  CAS  Google Scholar 

  40. R. T. Gephart III, D. L. Huang, M. J. B. Aguila, G. Schmidt, A. Shahu, T. H. Warren, Angew. Chem., Int. Ed., 2012, 51, 6488; DOI: https://doi.org/10.1002/anie.201201921.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Lyalin.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was performed under financial support of the Russian Foundation for Basic Research (Project No. 19-29-08027).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 9, pp. 2095–2101, September, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigacheva, V.L., Kokorekin, V.A., Gorpinchenko, N.V. et al. A new approach to the synthesis of azobenzenes based on the oxidative N—N coupling of anilines under the action of electrogenerated NiO(OH), NaOCl, and NaOBr. Russ Chem Bull 72, 2095–2101 (2023). https://doi.org/10.1007/s11172-023-4004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-4004-x

Key words

Navigation