Skip to main content
Log in

Dehydrocoupling of alkoxyarenes with aromatic hydrosilanes catalyzed by scandium aminobenzyl complexes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Scandium tris(o-aminobenzyl) complex Sc(o-CH2C6H4NMe2)3 (1) and its cationic derivative [Sc(o-CH2C6H4NMe2)2][B(C6F5)4] (2) catalyze the dehydrocoupling of alkoxyarenes with various aromatic hydrosilanes in toluene at 90 °C to give C-H silylation products in 15–89% yields (24 h). The product yield depends on the nature and the ratio of the substrates, and the new carbon-silicon bond is formed only in the ortho-position relative to the alkoxy substituent in the aromatic ring. Cationic complex 2 proved to be a much more active catalyst for dehydrocoupling than neutral complex 1 and provides substrate conversion of 55–89% versus 15–45%. According to NMR spectroscopy data, complex 1 reacts with both substrates in the catalytic reaction. The reaction of 1 with anisole is accompanied by ortho-metallation of the latter and gives the complex (o-CH2C6H4NMe2)2Sc(o-C6H4OMe) (4), whereas the reaction with PhSiH3 affords the hydride [Sc(o-CH2C6H4NMe2)2H] (5). The successive reactions of 1 with [Ph3C][B(C6F5)4] and anisole (1:1:1 molar ratio) result in the formation of the cationic complex [(o-CH2C6H4NMe2)Sc(o-C6H4OMe)]+[B(C6F5)4] (6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Organosilicon Chemistry VI: From Molecules to Materials, Eds N. Auner, J. Weis, WILEY-VCH (Germany), 2008; DOI: https://doi.org/10.1002/1099-0739(200008)14:8<451::AID-AOC30>3.0.CO;2-L.

    Google Scholar 

  2. C. Rücker, K. Kümmerer, Chem. Rev., 2015, 115, 466; DOI: https://doi.org/10.1021/cr500319v.

    Article  PubMed  Google Scholar 

  3. B. G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Microdevices), Springer Publishing Company, Incorporated, 2013; DOI: https://doi.org/10.1007/b105378.

    Google Scholar 

  4. E. A. Grushevenko, I. L. Borisov, A. A. Knyazeva, V. V. Volkov, A. V. Volkov, Sep. Purif. Technol., 2020, 241, 116696; DOI: https://doi.org/10.1016/j.seppur.2020.116696.

    Article  CAS  Google Scholar 

  5. J. Schultz, K.-V. Peinemann, J. Membr. Sci., 1996, 110, 37; DOI: https://doi.org/10.1016/0376-7388(95)00214-6.

    Article  CAS  Google Scholar 

  6. L. Rösch, P. John, R. Reitmeier, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000; DOI: https://doi.org/10.1002/14356007.a24_021.

  7. M. B. Frampton, P. M. Zelisko, Silicon, 2009, 1, 147; DOI: https://doi.org/10.1007/s12633-009-9021-3.

    Article  CAS  Google Scholar 

  8. S. Fujii, Y. Hashimoto, Future Med. Chem., 2017, 9, 485; DOI: https://doi.org/10.4155/fmc-2016-0193.

    Article  CAS  PubMed  Google Scholar 

  9. A. K. Franz, S. O. Wilson, J. Med. Chem., 2013, 56, 388; DOI: https://doi.org/10.1021/jm3010114.

    Article  CAS  PubMed  Google Scholar 

  10. N. S. Sarai, B. J. Levin, J. M. Roberts, D. M. Katsoulis, F. H. Arnold, ACS Cent. Sci., 2021, 7, 944; DOI: https://doi.org/10.1021/acscentsci.1c00182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Sharma, R. Kumar, I. Kumar, B. Singh, U. Sharma, Synth., 2015, 47, 2347; DOI: https://doi.org/10.1055/s-0034-1380435.

    Article  CAS  Google Scholar 

  12. Z. Xu, W. S. Huang, J. Zhang, L. W. Xu, Synth., 2015, 47, 3645; DOI: https://doi.org/10.1055/s-0035-1560646.

    Article  CAS  Google Scholar 

  13. A. A. Trifonov, Coord. Chem. Rev., 2010, 254, 1327; DOI: https://doi.org/10.1016/j.ccr.2010.01.008.

    Article  CAS  Google Scholar 

  14. H. Pellissier, Coord. Chem. Rev., 2016, 313, 1; DOI: https://doi.org/10.1016/j.ccr.2016.01.005.

    Article  CAS  Google Scholar 

  15. A. A. Trifonov, D. M. Lyubov, Coord. Chem. Rev., 2017, 340, 10; DOI: https://doi.org/10.1016/j.ccr.2016.09.013.

    Article  CAS  Google Scholar 

  16. M. Zimmermann, R. Anwander, Chem. Rev., 2010, 110, 6194; DOI: https://doi.org/10.1021/cr1001194.

    Article  CAS  PubMed  Google Scholar 

  17. M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res., 2015, 48, 2209; DOI: https://doi.org/10.1021/acs.accounts.5b00219.

    Article  CAS  PubMed  Google Scholar 

  18. P. L. Arnold, M. W. McMullon, J. Rieb, F. E. Kuhn, Angew. Chem., Int. Ed., 2015, 54, 82; DOI: https://doi.org/10.1002/anie.201404613.

    Article  CAS  Google Scholar 

  19. B.-T. Guan, Z. Hou, J. Am. Chem. Soc., 2011, 133, 18086; DOI: https://doi.org/10.1021/ja208129t.

    Article  CAS  PubMed  Google Scholar 

  20. R. Waterman, Organometallics, 2013, 32, 7249; DOI: https://doi.org/10.1021/om400760k.

    Article  CAS  Google Scholar 

  21. Z. Hou, Y. Wakatsuki, Coord. Chem. Rev., 2002, 231, 1; DOI: https://doi.org/10.1016/S0010-8545(02)00111-X.

    Article  CAS  Google Scholar 

  22. X. Li, Z. Hou, Coord. Chem. Rev., 2008, 252, 1842; DOI: https://doi.org/10.1016/j.ccr.2007.11.027.

    Article  CAS  Google Scholar 

  23. J. Oyamada, M. Nishiura, Z. Hou, Angew. Chem., Int. Ed., 2011, 50, 10720; DOI: https://doi.org/10.1002/anie.201105636.

    Article  CAS  Google Scholar 

  24. G. A. Gurina, A. A. Kissel, A. M. Ob’edkov, A. V. Cherkasov, A. A. Trifonov, Mendeleev Commun., 2021, 31, 631; DOI: https://doi.org/10.1016/j.mencom.2021.09.013.

    Article  CAS  Google Scholar 

  25. C. Cheng, J. F. Hartwig, Chem. Rev., 2015, 17, 8946; DOI: https://doi.org/10.1021/cr5006414.

    Article  Google Scholar 

  26. L. E. Manzer, J. Am. Chem. Soc., 1978, 100, 8068; DOI: https://doi.org/10.1021/ja00494a007.

    Article  CAS  Google Scholar 

  27. N. Yu. Rad’kova, G. S. Skvortsov, A. V. Cherkasov, G. K. Fukin, T. A. Kovylina, A. M. Ob’edkov, A. A. Trifonov, Eur. J. Inorg. Chem., 2021, 2365; DOI: https://doi.org/10.1002/ejic.202100238.

  28. S. Arndt, J. Okuda, Adv. Synth. Catal., 2005, 347, 339; DOI: https://doi.org/10.1002/adsc.200404269.

    Article  CAS  Google Scholar 

  29. S. Bambirra, M. Bouwkamp, A. Meetsman, B. Hessen, J. Am. Chem. Soc., 2004, 126, 9182; DOI: https://doi.org/10.1021/ja0475297.

    Article  CAS  PubMed  Google Scholar 

  30. L. Zhang, M. Nishiura, M. Yuki, Y. Luo, Z. Hou, Angew. Chem., Int. Ed., 2008, 47, 2642; DOI: https://doi.org/10.1002/anie.200705120.

    Article  CAS  Google Scholar 

  31. M. Nishiura, T. Mashiko, Z. Hou, Chem. Commun., 2008, 2019; DOI: https://doi.org/10.1039/B719182K.

  32. J. Hong, L. Zhang, K. Wang, Z. Chen, L. Wu, X. Zhou, Organometallics, 2013, 32, 7312; DOI: https://doi.org/10.1021/om400787j.

    Article  CAS  Google Scholar 

  33. Y. Chen, D. Song, J. Li, X. Hu, X. Bi, T. Jiang, Z. Hou, ChemCatChem, 2017, 10, 159; DOI: https://doi.org/10.1002/cctc.201700980.

    Article  Google Scholar 

  34. J. Oyamada, Z. Hou, Angew. Chem., Int. Ed., 2012, 51, 12828; DOI: https://doi.org/10.1002/anie.201206233.

    Article  CAS  Google Scholar 

  35. T. Jia, S.-y. Xu, Li-C. Huang, W. Gao, Polyhedron, 2018, 145, 182; DOI: https://doi.org/10.1016/j.poly.2018.02.010.

    Article  CAS  Google Scholar 

  36. Y. Wang, I. D. Rosal, G. Qin, L. Zhao, L. Maron, X. Shi, J. Cheng, Chem. Commun., 2021, 57, 7766; DOI: https://doi.org/10.1039/D1CC01841H.

    Article  CAS  Google Scholar 

  37. N. R. Halcovitch, M. D. Fryzuk, Organometallics, 2013, 32, 5705; DOI: https://doi.org/10.1021/om400353h.

    Article  CAS  Google Scholar 

  38. P. Cui, T. P. Spaniol, L. Maron, J. Okuda, Chem. Commun., 2014, 50, 424; DOI: https://doi.org/10.1039/C3CC47805J.

    Article  CAS  Google Scholar 

  39. W. Huang, F. Dulong, S. I. Khan, T. Cantat, P. L. Diaconescu, J. Am. Chem. Soc., 2014, 136, 17410; DOI: https://doi.org/10.1021/ja510761j.

    Article  CAS  PubMed  Google Scholar 

  40. A. Yamomoto, M. Nishiura, Y. Yang, Z. Hou, Organometallics, 2017, 36, 4635; DOI: https://doi.org/10.1021/acs.organomet.7b00526.

    Article  Google Scholar 

  41. W. Mao, L. Xiang, L. Maron, X. Leng, Y. Chen, J. Am. Chem. Soc., 2017, 139, 17759; DOI: https://doi.org/10.1021/jacs.7b11097.

    Article  CAS  PubMed  Google Scholar 

  42. P. G. Hayes, W. E. Piers, M. Parvez, Organometallics, 2005, 24, 1173; DOI: https://doi.org/10.1021/om050007v.

    Article  CAS  Google Scholar 

  43. S. Misumi, T. Taketatsu, Bull. Chem. Soc. Jpn, 1959, 32, 873; DOI: https://doi.org/10.1246/bcsj.32.873.

    Article  Google Scholar 

  44. N. Hirone, H. Sanjiki, R. Tanaka, T. Hata, H. Urabe, Angew. Chem., Int. Ed., 2010, 49, 7762; DOI: https://doi.org/10.1002/anie.201003174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Trifonov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90-year birthday. Based on the materials of All-Russia Conference “All-Russian Day of Rare Earths” (February 14–16, 2022, Kazan).

This study was financially supported by the Russian Science Foundation (Project No. 20-73-00304). The study was carried out using research equipment of the Center for Investigation of Molecular Structure, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1955–1968, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babkin, A.I., Kissel, A.A., Ob’edkov, A.M. et al. Dehydrocoupling of alkoxyarenes with aromatic hydrosilanes catalyzed by scandium aminobenzyl complexes. Russ Chem Bull 71, 1955–1968 (2022). https://doi.org/10.1007/s11172-022-3614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3614-z

Key words

Navigation