Skip to main content
Log in

Hydrazine-mediated C-O bond reductive cleavage in some bis- and mono-O-substituted derivatives of 4-tert-butylcalix[4]arene

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Novel di- and tetra-substituted calix[4]arene derivatives bearing diacetylene moieties at the lower rim of macrocycle were synthesized via the Mitsunobu and Williamson reactions. The dealkylation of diacetylene moieties of calix[4]arene was for the first time discovered in the DMSO—hydrazine hydrate system. An important role in the dealkylation of diacetylene moieties is played by neighboring unsubstituted OH groups at the macrocycle. Blocking of OH groups with butyl substituents and elongation of the linker between the butadiynyl fragments and the macrocyclic platform significantly reduce the affinity of macrocycle to reductive cleavage. The unique reactivity of calix[4]arene in its reaction with hydrazine hydrate was demonstrated in comparison with a model conjugate of diacetylene with 4-tert-butylphenol. The reductive cleavage may proceed via the formation of pyrazole derivative of calix[4]arene. Pyrazole derivatives were the most reactive ones in the reaction with hydrazine hydrate among the studied isostructural calixarenes containing an active α-arylmethyleneoxy moiety. Results of performed quantum chemical calculations allowed us to propose a scheme for the reductive cleavage of oxymethylene derivatives of pyrazole with hydrazine hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shi, A. Lei, Tetrahedron Lett., 2014, 55, 2763; DOI: https://doi.org/10.1016/j.tetlet.2014.03.022.

    Article  CAS  Google Scholar 

  2. X. Quian, B. Stadler, Chem. Mater., 2019, 31, 1196; DOI: https://doi.org/10.1021/acs.chemmater.8b05185.

    Article  Google Scholar 

  3. H. Jiang, W. Zeng, Y. Li, W. Wu, L. Huang, W. Fu, J. Org. Chem., 2012, 77, 5179; DOI: https://doi.org/10.1021/jo300692d.

    Article  CAS  Google Scholar 

  4. L. Wang, X. Yu, X. Feng, M. Bao, J. Org. Chem., 2013, 78, 1693; DOI: https://doi.org/10.1021/jo302732v.

    Article  CAS  Google Scholar 

  5. Q. Zheng, R. Hua, Tetrahedron Lett., 2010, 51, 4512; DOI: https://doi.org/10.1016/j.tetlet.2010.06.092.

    Article  CAS  Google Scholar 

  6. K. T. Potts, S. A. Nye, K. A. Smith, J. Org. Chem., 1992, 57, 3895; DOI: https://doi.org/10.1021/jo00040a032.

    Article  CAS  Google Scholar 

  7. Calixarenes and Beyond, Eds P. Neri, J. L. Sessler, M.-X. Wang, Springer, Cham, 2016, 1062 pp.; DOI: https://doi.org/10.1007/978-3-319-31867-7_33.

    Google Scholar 

  8. S. E. Solovieva, V. A. Burilov, I. S. Antipin, Macroheterocycles, 2017, 10, 134; DOI: https://doi.org/10.6060/mhc170512a.

    Article  CAS  Google Scholar 

  9. F. Nasuhi Pur, Mol. Diversity, 2016, 20, 781; DOI: https://doi.org/10.1007/s11030-016-9667-x.

    Article  CAS  Google Scholar 

  10. J. Yang, J. Liu, Y. Wang, J. Wang, J. Incl. Phenom. Macrocycl. Chem., 2018, 90, 15; DOI: https://doi.org/10.1007/s10847-017-0766-9.

    Article  CAS  Google Scholar 

  11. V. A. Burilov, I. M. Bogdanov, R. I. Garipova, A. A. Volodina, D. A. Mironova, V. G. Evtugyn, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2022, 71, 131; DOI: https://doi.org/10.1007/s11172-022-3386-5.

    Article  CAS  Google Scholar 

  12. A. A. Muravev, A. S. Agarkov, F. B. Galieva, A. T. Yakupov, O. B. Bazanova, I. Kh. Rizvanov, A. V. Shokurov, A. V. Zaitseva, S. L. Selektor, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2020, 69, 339; DOI: https://doi.org/10.1007/s11172-020-2766-y.

    Article  CAS  Google Scholar 

  13. V. A. Burilov, D. A. Mironova, R. R. Ibragimova, V. G. Evtugyn, Yu. N. Osin, S. E. Solovieva, I. S. Antipin, BioNanoSci., 2018, 8, 337; DOI: https://doi.org/10.1007/s12668-017-0484-1.

    Article  Google Scholar 

  14. N. J. Maher, H. Diao, J. O’Sullivan, E. Fadda, F. Heaney, J. McGinley, Tetrahedron, 2015, 71, 9223; DOI: https://doi.org/10.1016/j.tet.2015.10.045.

    Article  CAS  Google Scholar 

  15. A. Gorbunov, D. Cheshkov, V. Kovalev, I. Vatsouro, Chem. Eur. J., 2015, 21, 9528; DOI: https://doi.org/10.1002/chem.201500946.

    Article  CAS  Google Scholar 

  16. A. K. Agrahari, A. K. Singh, A. S. Singh, M. Singh, P. Maji, S. Yadav, S. Rajkhowa, P. Prakash, V. K. Tiwari, New J. Chem., 2020, 44, 19300; DOI:https://doi.org/10.1039/d0nj02591g.

    Article  CAS  Google Scholar 

  17. A. A. Muravev, S. E. Solovieva, F. B. Galieva, O. B. Bazanova, I. K. Rizvanov, K. A. Ivshin, O. N. Kataeva, S. E. Matthewsc, I. S. Antipin, RSC Adv., 2018, 8, 32765; DOI: https://doi.org/10.1039/c8ra06349d.

    Article  CAS  Google Scholar 

  18. V. Burilov, A. Valiyakhmetova, D. Mironova, R. Safiullin, M. Kadirov, K. Ivshin, O. Kataeva, S. Solovieva, I. Antipin, RSC Adv., 2016, 6, 44873; DOI: https://doi.org/10.1039/C6RA07555J.

    Article  CAS  Google Scholar 

  19. Y. Kashiwame, T. Ikariya, S. Kuwata, Polyhedron, 2021, 197, 115036; DOI: https://doi.org/10.1016/j.poly.2021.115036.

    Article  CAS  Google Scholar 

  20. V. A. Burilov, G. A. Fatikhova, M. N. Dokuchaeva, R. I. Nugmanov, D. A. Mironova, P. V. Dorovatovskii, V. N. Khrustalev, S. E. Solovieva, I. S. Antipin, Beilstein J. Org. Chem., 2018, 14, 1980; DOI: https://doi.org/10.3762/bjoc.14.173.

    Article  CAS  Google Scholar 

  21. K. Tsutsumi, S. Ogoshi, S. Nishiguchi, H. Kurosawa, J. Am. Chem. Soc., 1998, 120, 1938; DOI: https://doi.org/10.1021/om700909k.

    Article  CAS  Google Scholar 

  22. H. Li, L. Wang, M. Yang, Y. Qi, Catal. Commun., 2012, 17, 179; DOI: https://doi.org/10.1016/j.catcom.2011.10.027.

    Article  CAS  Google Scholar 

  23. L. S. Arora, H. M. Chawla, M. Shahid, N. Pant, Org. Prep. Proced. Int., 2017, 49, 228; DOI: https://doi.org/10.1080/00304948.2017.1320903.

    Article  CAS  Google Scholar 

  24. V. A. Burilov, R. I. Nugmanov, R. R. Ibragimova, S. E. Solovieva, I. S. Antipin, A. I. Konovalov, Mendeleev Commun., 2013, 23, 113; DOI: https://doi.org/10.1016/j.mencom.2013.03.022.

    Article  CAS  Google Scholar 

  25. E. A. Alekseeva, A. P. Luk’yanenko, A. I. Gren, Mendeleev Commun., 2012, 22, 263; DOI: https://doi.org/10.1016/j.mencom.2012.09.012.

    Article  CAS  Google Scholar 

  26. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  27. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116; DOI: https://doi.org/10.1016/j.cplett.2005.09.046.

    Article  CAS  Google Scholar 

  28. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Elsevier, Oxford, 2009, 760 pp.; DOI: https://doi.org/10.1016/C2009-0-26589-5.

    Google Scholar 

  29. J. Schmidt-Leithoff, R. Brückner, Synlett, 2006, 16, 2641; DOI: https://doi.org/10.1055/s-2006-951473.

    Google Scholar 

  30. N. Iki, C. Kabuto, T. Fukushima, H. Kumagai, H. Takeya, S. Miyanari, T. Miyashi, S. Miyano, Tetrahedron, 2000, 56, 1437; DOI: https://doi.org/10.1016/S0040-4020(00)00030-2.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Grant No. 21-73-10062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Burilov or S. E. Solovieva.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1497–1505, July, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burilov, V.A., Belov, R.N., Nugmanov, R.I. et al. Hydrazine-mediated C-O bond reductive cleavage in some bis- and mono-O-substituted derivatives of 4-tert-butylcalix[4]arene. Russ Chem Bull 71, 1497–1505 (2022). https://doi.org/10.1007/s11172-022-3556-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3556-5

Key words

Navigation