Skip to main content
Log in

Study on formation mechanism of (4RS,6SR)-4,6-diaryl-5,5-dicyano-2-methyl-1,4,5,6-tetrahydropyridine-3-carboxylic esters

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The mechanism of formation of methyl (4RS,6SR)-2-(4-bromophenyl)-5,5-dicyano-4,6-bis(4-methylphenyl)-1,4,5,6-tetrahydropyridine-3-carboxylate was estimated. Formation of 1,4,5,6-tetrahydropyridine moiety proceeds through a sequence of the Michael addition, the Mannich reaction, stereoselective cyclization to polysubstituted (2SR,3RS,4SR,6RS)-2-hydroxypiperidine, dehydration to (3RS,4SR,6RS)-3,4,5,6-tetrahydropyridine, and isomerization. Polysubstituted (4RS,6SR)-1,4,5,6-tetrahydropyridine was found to be thermodynamically more stable than isomeric (3RS,4SR,6RS)-3,4,5,6-tetrahydropyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vardanyan, Piperidine-Based Drug Discovery, Ch. 1:1–82, Elsevier Ltd, Amsterdam, 2017.

    Google Scholar 

  2. N. M. Przhevalskii, R. K. Laypanov, G. P. Tokmakov, I. V. Lukina, D. A. Vershinkin, V. A. Tafeenko, Russ. Chem. Bull., 2021, 70, 555; DOI: https://doi.org/10.1007/s11172-021-3124-4.

    Article  CAS  Google Scholar 

  3. I. A. Novakov, D. S. Sheikin, M. B. Navrotskii, A. S. Mkrtchyan, L. L. Brunilina, K. V. Balakin, Russ. Chem. Bull., 2020, 69, 1625; DOI: https://doi.org/10.1007/s11172-020-2946-9.

    Article  CAS  Google Scholar 

  4. S. Goldmann, J. Stoltefuss, Angew. Chem., Int. Ed., 1991, 30, 1559; DOI: https://doi.org/10.1002/anie.199115591.

    Article  Google Scholar 

  5. B. J. Epstein, K. Vogel, B. F. Palmer, Drugs, 2007, 67, 1309; DOI: https://doi.org/10.2165/00003495-200767090-00005.

    Article  CAS  Google Scholar 

  6. M. Misra, S. K. Pandey, V. P. Pandey, J. Pandey, R. Tripathi, R. P. Tripathi, Bioorg. Med. Chem., 2009, 17, 625; DOI: https://doi.org/10.1016/j.bmc.2008.11.062.

    Article  CAS  Google Scholar 

  7. I. Borza, G. Domany, Curr. Top. Med. Chem., 2006, 6, 687; DOI: https://doi.org/10.2174/156802606776894456.

    Article  CAS  Google Scholar 

  8. R. Jain, D. Chen, R. J. White, D. V. Patel, Z. Yuan, Curr. Med. Chem., 2005, 12, 1607; DOI: https://doi.org/10.2174/0929867054367194.

    Article  CAS  Google Scholar 

  9. L. Bazargan, S. Fouladdel, A. Shafiee, M. Amini, S. M. Ghaffari, E. Azizi, Cell Biol. Toxicol., 2008, 24, 165; DOI: https://doi.org/10.1007/s10565-007-9026-x.

    Article  CAS  Google Scholar 

  10. S. R. M. D. Morshed, K. Hashimoto, Y. Murotani, M. Kawase, A. Shah, K. Satoh, H. Kikuchi, H. Nishikawa, J. Maki, H. Sakagami, Anticancer Res., 2005, 25, 2033.

    CAS  PubMed  Google Scholar 

  11. A. Hilgeroth, H. Lilie, Eur. J. Med. Chem., 2003, 38, 495; DOI: https://doi.org/10.1016/S0223-5234(03)00060-6.

    Article  CAS  Google Scholar 

  12. D. Schade, M. Lanier, E. Willems, K. Okolotowicz, P. Bushway, C. Wahlquist, C. Gilley, M. Mercola, J. R. Cashman, J. Med. Chem., 2012, 55, 9946; DOI: https://doi.org/10.1021/jm301144g.

    Article  CAS  Google Scholar 

  13. B. Han, J.-L. Li, C. Ma, S.-J. Zhang, Y.-C. Chen, Angew. Chem., Int. Ed., 2008, 47, 9971; DOI: https://doi.org/10.1002/anie.200804183.

    Article  CAS  Google Scholar 

  14. M. Rueping, A. P. Antonchick, Angew. Chem., Int. Ed., 2008, 47, 5836; DOI: https://doi.org/10.1002/anie.200801435.

    Article  CAS  Google Scholar 

  15. J. Zhang, W.-J. Yang, J. Sun, C.-G. Yan, Eur. J. Org. Chem., 2015, 7571; DOI: https://doi.org/10.1002/ejoc.201501052.

  16. R.-G. Han, Y. Wang, Y.-Y. Li, P.-F. Xu, Adv. Synth. Catal., 2008, 350, 1474; DOI: https://doi.org/10.1002/ejoc.201501052.

    Article  CAS  Google Scholar 

  17. A. N. Vereshchagin, Russ. Chem. Bull., 2017, 66, 1765; DOI: https://doi.org/10.1007/s11172-017-1950-1.

    Article  CAS  Google Scholar 

  18. H.-J. Wang, L.-P. Mo, Z.-H. Zhang, ACS Comb. Sci., 2011, 13, 181; DOI: https://doi.org/10.1021/co100055x.

    Article  CAS  Google Scholar 

  19. N. R. Agrawal, S. P. Bahekar, P. B. Sarode, S. S. Zade, H. S. Chandak, RSC Adv., 2015, 5, 47053; DOI: https://doi.org/10.1039/C5RA08022C.

    Article  CAS  Google Scholar 

  20. M. M. F. Ismail, A. M. Farrag, D. Abou-El-Ela, J. Heterocycl. Compd., 2020, 57, 3442; DOI: https://doi.org/10.1002/jhet.4064.

    CAS  Google Scholar 

  21. I. V. Dyachenko, V. D. Dyachenko, P. V. Dorovatovskii, V. N. Khrustalev, V. G. Nenajdenko, Russ. Chem. Bull., 2021, 70, 2145; DOI: https://doi.org/10.1007/s11172-021-3326-9.

    Article  CAS  Google Scholar 

  22. M. N. Elinson, S. K. Feducovich, T. A. Zaimovskaya, A. N. Vereshchagin, S. V. Gorbunov, G. I. Nikishin, Russ. Chem. Bull., 2005, 54, 1593; DOI: https://doi.org/10.1007/s11172-006-0008-6.

    Article  CAS  Google Scholar 

  23. A. N. Vereshchagin, M. N. Elinson, N. O. Stepanov, G. I. Nikishin, Mendeleev Commun., 2009, 19, 324; DOI: https://doi.org/10.1016/j.mencom.2009.11.010.

    Article  CAS  Google Scholar 

  24. M. N. Elinson, A. N. Vereshchagin, N. O. Stepanov, A. I. Ilovaisky, A. Y. Vorontsov, G. I. Nikishin, Tetrahedron, 2009, 65, 6057; DOI: https://doi.org/10.1016/j.tet.2009.05.062.

    Article  CAS  Google Scholar 

  25. M. N. Elinson, S. K. Feducovich, T. A. Zaimovskaya, A. N. Vereshchagin, G. I. Nikishin, Russ. Chem. Bull., 2003, 52, 2241; DOI: https://doi.org/10.1023/B:RUCB.0000011885.10104.da.

    Article  CAS  Google Scholar 

  26. M. N. Elinson, A. N. Vereshchagin, F. V. Ryzhkov, Curr. Org. Chem., 2017, 21, 1427; DOI: https://doi.org/10.2174/1385272820666161017170200.

    Article  CAS  Google Scholar 

  27. A. N. Vereshchagin, K. A. Karpenko, M. N. Elinson, E. O. Dorofeeva, A. S. Goloveshkin, M. P. Egorov, Mendeleev Commun., 2018, 28, 384; DOI: https://doi.org/10.1016/j.mencom.2018.07.014.

    Article  CAS  Google Scholar 

  28. A. N. Vereshchagin, K. A. Karpenko, M. N. Elinson, A. S. Goloveshkin, I. E. Ushakov, M. P. Egorov, Res. Chem. Intermed., 2018, 44, 5623; DOI: https://doi.org/10.1007/s11164-018-3444-7.

    Article  CAS  Google Scholar 

  29. A. N. Vereshchagin, K. A. Karpenko, M. N. Elinson, S. V. Gorbunov, A. M. Gordeeva, P. I. Proshin, A. S. Goloveshkin, M. P. Egorov, Monatsh. Chem., 2018, 149, 1979; DOI: https://doi.org/10.1007/s00706-018-2187-x.

    Article  CAS  Google Scholar 

  30. A. N. Vereshchagin, K. A. Karpenko, M. N. Elinson, A. S. Goloveshkin, E. O. Dorofeeva, M. P. Egorov, Res. Chem. Intermed., 2020, 46, 1183; DOI: https://doi.org/10.1007/s11164-019-04027-4.

    Article  CAS  Google Scholar 

  31. A. N. Vereshchagin, K. A. Karpenko, T. M. Iliyasov, M. N. Elinson, E. O. Dorofeeva, A. N. Fakhrutdinov, M. P. Egorov, Russ. Chem. Bull., 2018, 67, 2049; DOI: https://doi.org/10.1007/s11172-018-2327-9.

    Article  CAS  Google Scholar 

  32. A. N. Vereshchagin, T. M. Iliyasov, K. A. Karpenko, V. A. Smirnov, I. E. Ushakov, M. N. Elinson, Chem. Heterocycl. Compd., 2021, 57, 929; DOI: https://doi.org/10.1007/s10593-021-03002-5.

    Article  CAS  Google Scholar 

  33. M. Chakrabarty, S. Karmakar, S. Arima, Y. Harigaya, Heterocycles, 2007, 73, 795; DOI: https://doi.org/10.3987/COM-07-S(U)59.

    Article  CAS  Google Scholar 

  34. A. A. Granovsky, Firefly version 8., 1997; http://classic.chem.msu.su/gran/firefly/index.html.

  35. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. MontgomeryJr, J. Comput. Chem., 1993, 14, 1347; DOI: https://doi.org/10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  36. D. Rappoport, F. Furche, J. Chem. Phys., 2010, 133, 134105; DOI: https://doi.org/10.1063/1.3484283.

    Article  Google Scholar 

  37. A. N. Vereshchagin, M. N. Elinson, M. P. Egorov, RSC Adv., 2015, 5, 98522; DOI: https://doi.org/10.1039/C5RA19690F.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (Project No. 17-73-20260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vereshchagin.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1279–1283, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpenko, K.A., Iliyasov, T.M., Fakhrutdinov, A.N. et al. Study on formation mechanism of (4RS,6SR)-4,6-diaryl-5,5-dicyano-2-methyl-1,4,5,6-tetrahydropyridine-3-carboxylic esters. Russ Chem Bull 71, 1278–1283 (2022). https://doi.org/10.1007/s11172-022-3531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3531-1

Key words

Navigation