Skip to main content
Log in

Dimroth rearrangement “thiadiazole-triazole”: synthesis and exploration of 3-sulfanyl-1,2,4-triazolium salts as NHC-proligands

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of 1,4-disubstituted thiosemicarbazides with N,N-dimethylformamide dimethyl acetal afforded 1,4-disubstituted 1,2,4-triazolium-3-thiolates. Heating of the thiosemicarbazides with trimethyl orthoformate in the presence of Me3SiCl yielded 5-RNH-substituted 1,3,4-thiadiazolium salts and, in some cases, 1,4-disubstituted 3-sulfanyl-1,2,4-triazolium salts as by-products. It was found that the obtained heterocycles are capable of reversible interconversions depending on the medium acidity and the structure of substituent R. Aminothiadiazolium salts in the presence of bases underwent rearrangement into triazolium thiolates, except for the case when R = 2,6-diisopropylphenyl. Triazolium thiolates and sulfanyltriazolium salts were converted into aminothiadiazolium salts upon heating in an acidic medium. S-Alkylation of triazolium thiolates gave stable 3-alkylsulfanyl-1,2,4-triazolium salts, which can be used as NHC-proligands. Direct palladation of alkylsulfanyl triazolium salts was used to obtain the PEPPSI type Pd/NHC complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290; DOI: https://doi.org/10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  2. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature, 2014, 510, 485; DOI: https://doi.org/10.1038/nature13384.

    Article  CAS  PubMed  Google Scholar 

  3. P. Bellotti, M. Koy, M. N. Hopkinson, F. Glorius, Nat. Rev. Chem., 2021, 5, 711; DOI: https://doi.org/10.1038/s41570-021-00321-1.

    Article  CAS  Google Scholar 

  4. G. C. Fortman, S. P. Nolan, Chem. Soc. Rev., 2011, 40, 5151; DOI: https://doi.org/10.1039/C1CS15088J.

    Article  CAS  PubMed  Google Scholar 

  5. R. D. J. Froese, C. Lombardi, M. Pompeo, R. P. Rucker, M. G. Organ, Acc. Chem. Res., 2017, 50, 2244; DOI: https://doi.org/10.1021/acs.accounts.7b00249.

    Article  CAS  PubMed  Google Scholar 

  6. C. Diner, M. G. Organ, Organometallics, 2019, 38, 66; DOI: https://doi.org/10.1021/acs.organomet.8b00818.

    Article  CAS  Google Scholar 

  7. F. Nahra, D. J. Nelson, S. P. Nolan, Trends Chem., 2020, 2, 1096; DOI: https://doi.org/10.1016/j.trechm.2020.10.003.

    Article  CAS  Google Scholar 

  8. T. Scattolin, S. P. Nolan, Trends Chem., 2020, 2, 721; DOI: https://doi.org/10.1016/j.trechm.2020.06.001.

    Article  CAS  Google Scholar 

  9. Q. Zhao, G. Meng, S. P. Nolan, M. Szostak, Chem. Rev., 2020, 120, 1981; DOI: https://doi.org/10.1021/acs.chemrev.9b00634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. V. Astakhov, S. B. Soliev, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 2073; DOI: https://doi.org/10.1007/s11172-020-3002-5.

    Article  CAS  Google Scholar 

  11. S. B. Soliev, A. V. Astakhov, D. V. Pasyukov, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 683; DOI: https://doi.org/10.1007/s11172-020-2818-3.

    Article  CAS  Google Scholar 

  12. M. S. Denisov, M. V. Dmitriev, A. A. Gorbunov, V. A. Glushkov, Russ. Chem. Bull., 2019, 68, 2039; DOI: https://doi.org/10.1007/s11172-019-2664-3.

    Article  CAS  Google Scholar 

  13. V. A. Glushkov, D. N. Babentzev, M. V. Dmitriev, I. A. Borisova, M. S. Denisov, Russ. Chem. Bull., 2021, 70, 122; DOI: https://doi.org/10.1007/s11172-021-3065-y.

    Article  CAS  Google Scholar 

  14. R. Visbal, M. C. Gimeno, Chem. Soc. Rev., 2014, 43, 3551; DOI: https://doi.org/10.1039/C3CS60466G.

    Article  CAS  PubMed  Google Scholar 

  15. M. Elie, J. L. Renaud, S. Gaillard, Polyhedron, 2018, 140, 158; DOI: https://doi.org/10.1016/j.poly.2017.11.045.

    Article  CAS  Google Scholar 

  16. C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C.-H. Li, C. M. Crudden, Chem. Rev., 2019, 119, 4986; DOI: https://doi.org/10.1021/acs.chemrev.8b00514.

    Article  CAS  PubMed  Google Scholar 

  17. W. Liu, R. Gust, Coord. Chem. Rev., 2016, 329, 191; DOI: https://doi.org/10.1016/j.ccr.2016.09.004.

    Article  CAS  Google Scholar 

  18. M. Porchia, M. Pellei, M. Marinelli, F. Tisato, F. Del Bello, C. Santini, Eur. J. Med. Chem., 2018, 146, 709; DOI: https://doi.org/10.1016/j.ejmech.2018.01.065.

    Article  CAS  PubMed  Google Scholar 

  19. T. Zou, C.-N. Lok, P.-K. Wan, Z.-F. Zhang, S.-K. Fung, C.-M. Che, Curr. Opin. Chem. Biol., 2018, 43, 30; DOI: https://doi.org/10.1016/j.cbpa.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  20. T. Scattolin, V. A. Voloshkin, F. Visentin, S. P. Nolan, Cell Rep. Phys. Sci., 2021, 2, 100446; DOI: https://doi.org/10.1016/j.xcrp.2021.100446.

    Article  CAS  Google Scholar 

  21. X. Liang, S. Luan, Z. Yin, M. He, C. He, L. Yin, Y. Zou, Z. Yuan, L. Li, X. Song, C. Lv, W. Zhang, Eur. J. Med. Chem., 2018, 157, 62; DOI: https://doi.org/10.1016/j.ejmech.2018.07.057.

    Article  CAS  PubMed  Google Scholar 

  22. M. Mora, M. C. Gimeno, R. Visbal, Chem. Soc. Rev., 2019, 48, 447; DOI: https://doi.org/10.1039/C8CS00570B.

    Article  CAS  PubMed  Google Scholar 

  23. D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev., 2015, 115, 9307; DOI: https://doi.org/10.1021/acs.chemrev.5b00060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. Janssen-Müller, C. Schlepphorst, F. Glorius, Chem. Soc. Rev., 2017, 46, 4845; DOI: https://doi.org/10.1039/C7CS00200A.

    Article  PubMed  Google Scholar 

  25. J. Wang, C. Zhao, J. Wang, ACS Catal., 2021, 11, 12520; DOI: https://doi.org/10.1021/acscatal.1c03459.

    Article  CAS  Google Scholar 

  26. J. Liu, X.-N. Xing, J.-H. Huang, L.-Q. Lu, W.-J. Xiao, Chem. Sci., 2020, 11, 10605; DOI: https://doi.org/10.1039/D0SC03595E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. L. Marzo, Eur. J. Org. Chem., 2021, 2021, 4603; DOI: https://doi.org/10.1002/ejoc.202100261.

    Article  CAS  Google Scholar 

  28. B. Wang, L. Qin, T. Mu, Z. Xue, G. Gao, Chem. Rev., 2017, 117, 7113; DOI: https://doi.org/10.1021/acs.chemrev.6b00594.

    Article  CAS  PubMed  Google Scholar 

  29. T. Welton, Biophys. Rev., 2018, 10, 691; DOI: https://doi.org/10.1007/s12551-018-0419-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N. Nasirpour, M. Mohammadpourfard, S. Zeinali Heris, Chem. Eng. Res. Des., 2020, 160, 264; DOI: https://doi.org/10.1016/j.cherd.2020.06.006.

    Article  CAS  Google Scholar 

  31. M. A. Ortuño, N. López, Catal. Sci. Technol., 2019, 9, 5173; DOI: https://doi.org/10.1039/C9CY01351B.

    Article  Google Scholar 

  32. C. Cerezo-Navarrete, P. Lara, L. M. Martínez-Prieto, Catalyst, 2020, 10, 1144; DOI: https://doi.org/10.3390/catal10101144.

    Article  CAS  Google Scholar 

  33. V. M. Chernyshev, O. V. Khazipov, D. B. Eremin, E. A. Denisova, V. P. Ananikov, Coord. Chem. Rev., 2021, 437, 213860; DOI: https://doi.org/10.1016/j.ccr.2021.213860.

    Article  CAS  Google Scholar 

  34. M. Koy, P. Bellotti, M. Das, F. Glorius, Nat. Catal., 2021, 4, 352; DOI: https://doi.org/10.1038/s41929-021-00607-z.

    Article  CAS  Google Scholar 

  35. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev., 2017, 117, 7190; DOI: https://doi.org/10.1021/acs.chemrev.6b00504.

    Article  CAS  PubMed  Google Scholar 

  36. H. A. Elwan, R. Thimmappa, M. Mamlouk, K. Scott, J. Power Sources, 2021, 510, 230371; DOI: https://doi.org/10.1016/j.jpowsour.2021.230371.

    Article  CAS  Google Scholar 

  37. A. Ray, B. Saruhan, Materials, 2021, 14, 2942; DOI: https://doi.org/10.3390/ma14112942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A. Nasr, A. Winkler, M. Tamm, Coord. Chem. Rev., 2016, 316, 68; DOI: https://doi.org/10.1016/j.ccr.2016.02.011.

    Article  CAS  Google Scholar 

  39. E. Peris, Chem. Rev., 2018, 118, 9988; DOI: https://doi.org/10.1021/acs.chemrev.6b00695.

    Article  CAS  PubMed  Google Scholar 

  40. L. Benhamou, N. Vujkovic, V. César, H. Gornitzka, N. Lugan, G. Lavigne, Organometallics, 2010, 29, 2616; DOI: https://doi.org/10.1021/om1003607.

    Article  CAS  Google Scholar 

  41. L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz, V. César, Chem. Rev., 2011, 111, 2705; DOI: https://doi.org/10.1021/cr100328e.

    Article  CAS  PubMed  Google Scholar 

  42. Y. Zhang, V. César, G. Storch, N. Lugan, G. Lavigne, Angew. Chem., Int. Ed., 2014, 53, 6482; DOI: https://doi.org/10.1002/anie.201402301.

    Article  CAS  Google Scholar 

  43. Y. Zhang, G. Lavigne, N. Lugan, V. César, Chem. Eur. J., 2017, 23, 13792; DOI: https://doi.org/10.1002/chem.201702859.

    Article  CAS  PubMed  Google Scholar 

  44. V. V. Chesnokov, M. A. Shevchenko, S. B. Soliev, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2021, 70, 1281; DOI: https://doi.org/10.1007/s11172-021-3212-5.

    Article  CAS  Google Scholar 

  45. A. Y. Chernenko, A. V. Astakhov, V. V. Kutyrev, E. G. Gordeev, J. V. Burykina, M. E. Minyaev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Inorg. Chem. Front., 2021, 8, 3382; DOI: https://doi.org/10.1039/D1QI00453K.

    Article  CAS  Google Scholar 

  46. D. V. Pasyukov, A. Y. Chernenko, K. E. Shepelenko, V. V. Kutyrev, V. N. Khrustalev, V. M. Chernyshev, Mendeleev Commun., 2021, 31, 176; DOI: https://doi.org/10.1016/j.mencom.2021.03.010.

    Article  CAS  Google Scholar 

  47. V. M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin, V. P. Ananikov, Chem. Sci., 2018, 9, 5564; DOI: https://doi.org/10.1039/c8sc01353e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. V. Karthik, I. A. Bhat, G. Anantharaman, Organometallics, 2013, 32, 7006; DOI: https://doi.org/10.1021/om400585b.

    Article  CAS  Google Scholar 

  49. V. Karthik, V. Gupta, G. Anantharaman, Organometallics, 2014, 33, 6218; DOI: https://doi.org/10.1021/om5009023.

    Article  CAS  Google Scholar 

  50. S. A. Rahaman, B. Roy, S. Mandal, S. Bandyopadhyay, Inorg. Chem., 2016, 55, 1069; DOI: https://doi.org/10.1021/acs.inorgchem.5b02104.

    Article  CAS  PubMed  Google Scholar 

  51. K. T. Potts, Chem. Rev., 1961, 61, 87; DOI: https://doi.org/10.1021/cr60210a001.

    Article  CAS  Google Scholar 

  52. R. M. Shaker, ARKIVOC, 2006, 59; DOI: https://doi.org/10.3998/ark.5550190.0007.904.

  53. D. Dixit, P. K. Verma, R. K. Marwaha, J. Iran. Chem. Soc., 2021, 18, 2535; DOI: https://doi.org/10.1007/s13738-021-02231-x.

    Article  CAS  Google Scholar 

  54. F. Buccheri, G. Cusmano, M. Gruttadauria, R. Noto, G. Werber, J. Heterocycl. Chem., 1997, 34, 1447; DOI: https://doi.org/10.1002/jhet.5570340512.

    Article  CAS  Google Scholar 

  55. E. S. H. E. Ashry, Y. E. Kilany, N. Rashed, H. Assafir, Advances in Heterocyclic Chemistry, Ed. A. R. Katritzky, Academic Press, 1999, 75, 79; DOI: https://doi.org/10.1016/S0065-2725(08)60984-8.

  56. E. S. H. El Ashry, S. Nadeem, M. R. Shah, Y. E. Kilany, in Advances in Heterocyclic Chemistry, Ed. A. R. Katritzky, Academic Press, 2010, 101, 161; DOI: https://doi.org/10.1016/S0065-2725(10)01005-6.

  57. F. Buccheri, G. Cusmano, R. Noto, R. Rainieri, G. Werber, J. Heterocycl. Chem., 1987, 24, 521; DOI: https://doi.org/10.1002/jhet.5570240243.

    Article  CAS  Google Scholar 

  58. C. A. Montanari, J. P. B. Sandall, Y. Miyata, J. Miller, J. Chem. Soc., Perkin Trans. 2, 1994, 2571; DOI: https://doi.org/10.1039/P29940002571.

  59. A. Echevarria, S. E. Galembeck, M. A. M. Maciel, J. Miller, C. A. Montanari, V. M. Rumjanek, A. M. Simas, J. B. P. Sandall, Heterocycl. Commun., 1995, 1, 129; DOI: https://doi.org/10.1515/HC.1995.1.2-3.129.

    Article  CAS  Google Scholar 

  60. C. Soares de Oliveira, V. Dos Santos Falcão-Silva, J. P. Siqueira-Júnior, D. P. Harding, B. F. Lira, J. G. F. Lorenzo, J. M. Barbosa-Filho, P. Filgueiras de Athayde-Filho, Molecules, 2011, 16; DOI: https://doi.org/10.3390/molecules16032023.

  61. M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien, C. Valente, Chem.—Eur. J., 2006, 12, 4749; DOI: https://doi.org/10.1002/chem.200600206.

    Article  CAS  PubMed  Google Scholar 

  62. C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem.—Eur. J., 2006, 12, 4743; DOI: https://doi.org/10.1002/chem.200600251.

    Article  PubMed  CAS  Google Scholar 

  63. M. G. Organ, M. Abdel-Hadi, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien, M. Sayah, C. Valente, Chem.—Eur. J., 2008, 14, 2443; DOI: https://doi.org/10.1002/chem.200701621.

    Article  CAS  PubMed  Google Scholar 

  64. A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, P. V. Dorovatovskii, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 79; DOI: https://doi.org/10.1007/s11172-018-2040-8.

    Article  CAS  Google Scholar 

  65. S. G. Guillet, V. A. Voloshkin, M. Saab, M. Beliš, K. Van Hecke, F. Nahra, S. P. Nolan, Chem. Commun., 2020, 56, 5953; DOI: https://doi.org/10.1039/D0CC02262D.

    Article  CAS  Google Scholar 

  66. E. S. Degtyareva, J. V. Burykina, A. N. Fakhrutdinov, E. G. Gordeev, V. N. Khrustalev, V. P. Ananikov, ACS Catal., 2015, 5, 7208; DOI: https://doi.org/10.1021/acscatal.5b01815.

    Article  CAS  Google Scholar 

  67. O. V. Khazipov, M. A. Shevchenko, D. V. Pasyukov, A. Y. Chernenko, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, V. P. Ananikov, Catal. Sci. Technol., 2020, 10, 1228; DOI: https://doi.org/10.1039/C9CY02041A.

    Article  CAS  Google Scholar 

  68. C. Dash, M. M. Shaikh, P. Ghosh, Eur. J. Inorg. Chem., 2009, 2009, 1608; DOI: https://doi.org/10.1002/ejic.200900115.

    Article  CAS  Google Scholar 

  69. A. Kumar, M. K. Gangwar, A. P. Prakasham, D. Mhatre, A. C. Kalita, P. Ghosh, Ino rg. Chem., 2016, 55, 2882; DOI: https://doi.org/10.1021/acs.inorgchem.5b02727.

    Article  CAS  Google Scholar 

  70. A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981; DOI: https://doi.org/10.1021/acs.organomet.7b00184.

    Article  CAS  Google Scholar 

  71. R. A. Mekheimer, Y. R. Ibrahim, E. A. Ahmed, W. Frey, Tetrahedron, 2009, 65, 9843; DOI: https://doi.org/10.1016/j.tet.2009.09.082.

    Article  CAS  Google Scholar 

  72. I. Nikovskiy, A. Polezhaev, V. Novikov, D. Aleshin, A. Pavlov, E. Saffiulina, R. Aysin, P. Dorovatovskii, L. Nodaraki, F. Tuna, Y. Nelyubina, Chem.—Eur. J., 2020, 26, 5629; DOI: https://doi.org/10.1002/chem.202000047.

    Article  CAS  PubMed  Google Scholar 

  73. L. Zhen, H. Fan, X. Wang, L. Jiang, Org. Lett., 2019, 21, 2106; DOI: https://doi.org/10.1021/acs.orglett.9b00383.

    Article  CAS  PubMed  Google Scholar 

  74. K. Sasse, Justus Liebigs Ann. Chem., 1970, 735, 158; DOI: https://doi.org/10.1002/jlac.19707350120.

    Article  CAS  Google Scholar 

  75. K. N. Farrugia, D. Makuc, A. Podborska, K. Szaciłowski, J. Plavec, D. C. Magri, Org. Biomol. Chem., 2015, 13, 1662; DOI: https://doi.org/10.1039/C4OB02091J.

    Article  CAS  PubMed  Google Scholar 

  76. CrysAlisPro. Version 1.171.41. Rigaku Oxford Diffraction, 2021.

  77. G. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  CAS  Google Scholar 

  78. G. Sheldrick, Acta Crystallogr., Sect. C:, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  CAS  Google Scholar 

  79. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 993–1008, May, 2022.

The authors are grateful to Academician of the Russian Academy of Sciences V. P. Ananikov for fruitful discussion of the results of the work and valuable comments, to the “Nanotechnologies” Center of Collective Use of the Platov South-Russian State Polytechnic University, and to the Center of Collective Use of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences for conducting analytical experiments.

This work was carried out within the framework of the national project “Science and Universities” and was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-03-2021-016/4) in the laboratory “New composite and functional materials with special properties”.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasyukov, D.V., Chernenko, A.Y., Lavrentev, I.V. et al. Dimroth rearrangement “thiadiazole-triazole”: synthesis and exploration of 3-sulfanyl-1,2,4-triazolium salts as NHC-proligands. Russ Chem Bull 71, 993–1008 (2022). https://doi.org/10.1007/s11172-022-3501-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3501-7

Key words

Navigation