Skip to main content
Log in

Formation of cobalt (ɪɪɪ) polyaminopolycarboxylate complexes in aqueous solutions by the peroxide oxidation of the cobalt (ɪɪ) complexes

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The dynamics of the formation of cobalt(iii) complexes with anions of iminodiacetic, nitrilotriacetic, ethylenediaminetetraacetic, and diethylenetriaminepentaacetic acids in aqueous solutions by the peroxide oxidation of cobalt(ii) polyaminopolycarboxylates was studied by spectrophotometry and potentiometry. The optimum conditions for the formation of coordination cobalt particles in the highly oxidized state were selected, and the composition of the formed cobalt(iii) chelates was determined. Data on the thermodynamic stability of the coordinatively bound cobalt particles, specific features of the kinetics of peroxide oxidation, and the influence of the concentrations of the main components and acidity of the solutions on the rate of redox processes of cobalt(iii) polyaminopolycarboxylate formation were obtained. It was found that a strong catalytic decomposition of the reagent-oxidant at pH > 4.0 occurs during the formation of oxygenated intermediates in solutions of mononuclear ethylenediaminetetraacetate and binuclear diethylenetriamine-pentaacetate complexes of cobalt(ii). Based on the NMR spectroscopy data, a mechanism for the formation of the oxygenated particles was proposed. It was shown that diamagnetic binuclear oxygenated chelates of cobalt(iii) are characterized by low kinetic stability, which leads to the deoxygenation and formation of weakly paramagnetic mononuclear complexes of cobalt(iii).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Starikov, M. G. Chegerev, A. A. Starikova, V. I. Minkin, Russ. Chem. Bull., 2021, 70, 309.

    Article  CAS  Google Scholar 

  2. A. D. Ivanova, T. A. Kuz’menko, V. Yu. Komarov, L. A. Glinskaya, L. A. Sheludyakova, L. S. Klyushova, L. G. Lavrenova, Russ. Chem. Bull., 2021, 70, 1550.

    Article  CAS  Google Scholar 

  3. N. V. Scheglova, T. V. Popova, A. V. Druzhinina, T.V. Smotrina, J. Mol. Liq., 2019, 286, 110909; DOI: https://doi.org/10.1016/j.molliq.2019.110909.

    Article  CAS  Google Scholar 

  4. E. L. Chang, C. Simmers, D. A. Knight, Pharmaceuticals, 2010, 3, 1711; DOI: https://doi.org/10.3390/ph3061711.

    Article  CAS  Google Scholar 

  5. J. Lee, Bull. Korean Chem. Soc., 2012, 33, 2762; DOI: https://doi.org/10.5012/bkcs.2012.33.8.2762.

    Article  CAS  Google Scholar 

  6. S. J. Kirubavathy, R. Velmurugan, R. Karvembu, N. S. P. Bhuvanesh, K. Parameswari, S. Chitra, Russ. J. Coord. Chem., 2015, 41, 1; DOI: https://doi.org/10.7868/S0132344X15050047.

    Article  Google Scholar 

  7. D. O. Abe, A. Eskandari, K. Suntharalingam, Dalton Trans., 2018, 47, 13761; DOI: https://doi.org/10.1039/C8DT03448F.

    Article  CAS  Google Scholar 

  8. S. Ambika, Y. Manojkumar, S. Arunachalam, B. Gowdhami, K. K. Meenakshi Sundaram, R. V. Solomon, P. Venuvanalingam, M. A. Akbarsha, M. Sundararaman, Sci. Rep., 2019, 25, 2721; DOI: https://doi.org/10.1038/s41598-019-39179-1.

    Article  Google Scholar 

  9. S. E. Nefedov, M. A. Uvarova, M. A. Golubnichaya, I. V. Nefedova, D. G. Chikhichin, V. A. Kotseruba, O. A. Levchenko, G. L. Kamalov, Russ. J. Coord. Chem., 2014, 40, 358; DOI: https://doi.org/10.7868/S0132344X14060048.

    Article  CAS  Google Scholar 

  10. M. A. Emelyanov, N. V. Stoletova, A. A. Lisov, M. G. Medvedev, A. F. Smolyakov, V. I. Maleev, V. A. Larionov, Inorg. Chem. Front., 2021, 8, 3871; DOI: https://doi.org/10.1039/D1QI00464F.

    Article  CAS  Google Scholar 

  11. S. Ribeiro, L. C. Silva, S. S. Balula, S. Gago, New J. Chem., 2014, 38, 2500; DOI: DOI: https://doi.org/10.1039/C4NJ00120F.

    Article  CAS  Google Scholar 

  12. Y. A. Rulev, V. A. Larionov, A. V. Lokutova, M. A. Moskalenko, O. L. Lependina, V. I. Maleev, Y. N. Belokon, M. North, Chem. Sus. Chem., 2016, 9, 216; DOI: https://doi.org/10.1002/cssc.201501365.

    Article  CAS  Google Scholar 

  13. H. Ullah, B. Mousavi, H. A. Younus, Z. A. K. Khattak, S. Chaemchuen, S. Suleman, F. Verpoort, Commun. Chem., 2019, 2, 1; DOI: https://doi.org/10.1038/s42004-019-0139-y.

    Article  CAS  Google Scholar 

  14. R. Indumathy, P. S. Parameswarana, C. V. Aiswaryab, B. U. Nair, Polyhedron, 2014, 75, 22; DOI: https://doi.org/10.1016/j.poly.2014.03.016.

    Article  CAS  Google Scholar 

  15. D. S. Y. Gaelle, D. M. Yufanyi, R. Jagan, M. O. Agwara, D. Bradshaw, Cogent. Chem., 2016, 2, 1; DOI: https://doi.org/10.1080/23312009.2016.1253201.

    Article  Google Scholar 

  16. A. Adetoro, S. O. Idris, A. D. Onu, F. G. Okibe, Bull. Chem. Soc. Ethiop., 2021, 35, 425; DOI: https://doi.org/10.4314/bcse.v35i2.15.

    Article  CAS  Google Scholar 

  17. Y. Chen, H. Shi, C.-S. Lee, S.-M. Yiu, W.-L. Man, T.-C. Lau, J. Am. Chem. Soc., 2021, 143, 14445; DOI: https://doi.org/10.1021/jacs.1c07158.

    Article  CAS  Google Scholar 

  18. S. Abdulsalam, S. O. Idris, G. A. Shallangwa, A. D. Onu, Heliyon, 2020, 6, 1; DOI: https://doi.org/10.1016/j.heliyon.2020.e04621.

    Google Scholar 

  19. I. N. Polyakova, A. L. Poznyak, V. S. Sergienko, Crystallogr. Repts., 2012, 57, 241; DOI: https://doi.org/10.1134/S1063774512020150.

    Article  CAS  Google Scholar 

  20. M. Mori, M. Shibata, E. Kyuno, Y. Okubo, Bull. Chem. Soc. Jpn., 1958, 31, 940; DOI: https://doi.org/10.1246/BCSJ.31.940.

    Article  CAS  Google Scholar 

  21. L. A. Zasurskaya, I. N. Polyakova, V. B. Rybakov, T. N. Polynova, A. L. Poznyak, V. S. Sergienko, Crystallogr. Repts., 2006, 51, 448; DOI: https://doi.org/10.1134/S1063774506030138.

    Article  CAS  Google Scholar 

  22. R. K. Mudsainiyan, S. K. Chawla, Mol. Cryst. Liq. Crys., 2015, 606, 237; DOI: https://doi.org/10.1080/15421406.2014.916531.

    Article  CAS  Google Scholar 

  23. A. Uehara, E. Kyuno, R. Tsuchiya, Bull. Chem. Soc. Jpn., 1970, 43, 1397; DOI: https://doi.org/10.1246/bcsj.43.1394.

    Article  CAS  Google Scholar 

  24. A. Perveen, T. Nezamoleslam, I. I. Naqvi, Afr. J. Pure Appl. Chem., 2013, 7, 218; DOI: https://doi.org/10.5897/AJPAC07.034.

    Google Scholar 

  25. R. Mitsuhashi, M. Mikuriya, X-ray Structure Analysis Online, 2016, 32, 5; DOI: https://doi.org/10.2116/xraystruct.32.5.

    Article  CAS  Google Scholar 

  26. A. Bondoli, V. Carunchio, J. Inorg. Nucl. Chem., 1972, 34, 3491; DOI: https://doi.org/10.1016/0022-1902(72)80246-X.

    Article  CAS  Google Scholar 

  27. F. J. C. Rossotti, H. Rossotti, The Determination of Stability Constants and Other Equilibrium Constants in Solution, McGraw-Hill Book Company, New York—Toronto—London, 1961, 425 pp.

    Google Scholar 

  28. M. T. Beck, Chemistry of Complex Equilibria, Van Nostrand Reinhold Co., London, 1970, 285 pp.

    Google Scholar 

  29. N. V. Scheglova, T. V. Popova, Russ. Chem. Bull., 2020, 69, 1771; DOI: https://doi.org/10.1007/s11172-020-2961-x.

    Article  CAS  Google Scholar 

  30. G. Anderegg, Pure Appl. Chem., 1982, 54, 2693; DOI: https://doi.org/10.1351/pac198254122693.

    Article  CAS  Google Scholar 

  31. G. Wilkinson, R. D. Gillard, J. A. McCleverty, Comprehensive Coordination Chemistry, V. 2, Ligands, Pergamon Press, Oxford—New York—Beijing—Frankfurt—Sao Paulo—Sydney—Tokyo—Toronto, 1987, 1179 pp.

    Google Scholar 

  32. G. Anderegg, F. Arnaud-Neu, R. Delgado, J. Felcman, K. Popov, Pure Appl. Chem., 2005, 77, 1445; DOI: https://doi.org/10.1351/pac200577081445.

    Article  CAS  Google Scholar 

  33. M. Zabel, A. I. Poznyak, V. I. Pawlowskii, Russ. J. Coord. Chem., 2008, 34, 824; DOI: https://doi.org/10.1134/S1070328408110067.

    Article  CAS  Google Scholar 

  34. D. W. Cooke, Inorg. Chem., 1965, 5, 1141; DOI: https://doi.org/10.1021/IC50041A014.

    Article  Google Scholar 

  35. H. F. Bauer, W. C. Drinkard, J. Am. Chem. Soc., 1960, 82, 5031; DOI: https://doi.org/10.1021/ja01504a004.

    Article  CAS  Google Scholar 

  36. S. Nani, K. Das, A. Datta, S. Roy, E. Garribba, T. Akitsu, C. Sinha, Inorg. Chim. Acta, 2017, 462, 75; DOI: https://doi.org/10.1016/j.ica.2017.03.015.

    Article  Google Scholar 

  37. T. J. Collins, T. G. Richmond, B. D. Santarsiero, B. G. R. T. Treco, J. Am. Chem. Soc., 1986, 108, 2088; DOI: https://doi.org/10.1021/ja00268a058.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Popova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 946–952, May, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheglova, N.V., Popova, T.V. & Smotrina, T.V. Formation of cobalt (ɪɪɪ) polyaminopolycarboxylate complexes in aqueous solutions by the peroxide oxidation of the cobalt (ɪɪ) complexes. Russ Chem Bull 71, 946–952 (2022). https://doi.org/10.1007/s11172-022-3495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3495-1

Keywords

Navigation