Skip to main content
Log in

Molecular modeling of ceftriaxone activation in the active sites of penicillin-binding proteins 2

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The enzyme—substrate complexes of penicillin-binding proteins PBP2 from FA19, 35/02, and H041 strains of Nisseria gonorrhoeae with ceftriaxone were simulated by the molecular dynamics method with the combined quantum mechanics/molecular mechanics potentials. The hydrogen bond lengths between the carbonyl oxygen atom of the substrate and amino acid residues of the oxyanion hole, as well as the distances of the nucleophilic attack by the oxygen atom of the catalytic serine of the carbonyl carbon atom of the substrate were considered. The 2D maps of the Laplacian of electron density show a more efficient activation of the substrate by the wild type enzyme rather than mutated species. This is consistent with the geometry features: distributions of the lengths of hydrogen bonds forming oxyanion hole and nucleophilic attack distance that are shifted toward lower values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sauvage, F. Kerff, M. Terrak, J. A. Ayala, P. Charlier, FEMS Microbiol. Rev., 2008, 32, 234; DOI: https://doi.org/10.1111/j.1574-6976.2008.00105.x.

    Article  CAS  Google Scholar 

  2. M. A. W. Shalaby, E. M. Dokla, R. A. Serya, K. A. Abouzid, Eur. J. Med. Chem., 2020, 199, 112312; DOI: https://doi.org/10.1016/j.ejmech.2020.112312.

    Article  CAS  Google Scholar 

  3. J. Tomberg, A. Fedarovich, L. R. Vincent, A. E. Jerse, M. Unemo, C. Davies, R. A. Nicholas, Biochem., 2017, 56, 1140; DOI: https://doi.org/10.1074/jbc.RA120.012617.

    Article  CAS  Google Scholar 

  4. A. Singh, J. M. Turner, J. Tomberg, A. Fedarovich, M. Unemo, R. A. Nicholas, C. Davies, J. Biol. Chem., 2020, 295, 7529; DOI: https://doi.org/10.1074/jbc.RA120.012617.

    Article  CAS  Google Scholar 

  5. M. Ohnishi, D. Golparian, K. Shimuta, T. Saika, S. Hoshina, K. Iwasaku, Antimicrob. Agents Chemother., 2011, 55, 3538; DOI: https://doi.org/10.1128/AAC.00325-11.

    Article  CAS  Google Scholar 

  6. J. Tomberg, M. Unemo, M. Ohnishi, C. Davies, R. A. Nicholas, Antimicrob. Agents Chemother., 2013, 57, 3029; DOI: https://doi.org/10.1128/AAC.00093-13.

    Article  CAS  Google Scholar 

  7. A. V. Nemukhin, B. L. Grigorenko, S. V. Lushchekina, S. D. Varfolomeev, Russ. Chem. Bull., 2021, 70, 2084–2089; DOI: https://doi.org/10.1007/s11172-021-3319-8.

    Article  CAS  Google Scholar 

  8. A. M. Kulakova, M. G. Khrenova, Russ. J. Phys. Chem., 2021, 15, 394; DOI: https://doi.org/10.1134/s1990793121030246.

    Article  CAS  Google Scholar 

  9. M. G. Khrenova, V. G. Tsirelson, A. V. Nemukhin, Phys. Chem. Chem. Phys., 2020, 22, 19069; DOI: https://doi.org/10.1039/D0CP03560B.

    Article  CAS  Google Scholar 

  10. A. V. Krivitskaya, M. G. Khrenova, Molecules, 2021, 26, 2026; DOI: https://doi.org/10.3390/molecules26072026.

    Article  CAS  Google Scholar 

  11. M. G. Khrenova, A. M. Kulakova, A. V. Nemukhin, J. Chem. Inf. Model., 2021, 61, 1215–1225; DOI: https://doi.org/10.1021/acs.jcim.0c01308.

    Article  CAS  Google Scholar 

  12. M. G. Khrenova, E. S. Bulavko, F. D. Mulashkin, A. V. Nemukhin, Molecules, 2021, 26, 3998; DOI: https://doi.org/10.3390/molecules26133998.

    Article  CAS  Google Scholar 

  13. Yu. I. Meteleshko, M. G. Khrenova, A. V. Nemukhin, Crystallogr. Repts, 2021, 66, 815; DOI: https://doi.org/10.1134/s106377452105014x.

    Article  CAS  Google Scholar 

  14. A. Singh, J. Tomberg, A. Fedarovich, C. Davies, R. A. Nicholas, J. Biol. Chem., 2020, 294, 14020; DOI: https://doi.org/10.1074/jbc.RA119.009942.

    Article  Google Scholar 

  15. J. M. Word, S. C. Lovell, J. S. Richardson, D. C. Richardson, J. Mol. Biol., 1999, 285, 1735; DOI: https://doi.org/10.1006/jmbi.1998.2401.

    Article  CAS  Google Scholar 

  16. J. Huang, J. Comput. Chem., 2013, 34, 2135; DOI: https://doi.org/10.1002/jcc.23354.

    Article  CAS  Google Scholar 

  17. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys., 1983, 79, 926; DOI: https://doi.org/10.1063/1.445869.

    Article  CAS  Google Scholar 

  18. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, Jr., J. Comput. Chem., 2010, 31, 671; DOI: https://doi.org/10.1002/jcc.21367.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, Ch. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem., 2005, 26, 1781; DOI: https://doi.org/10.1002/jcc.20289.

    Article  CAS  Google Scholar 

  20. C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158; DOI: https://doi.org/10.1063/1.478522.

    Article  CAS  Google Scholar 

  21. S. Grimme, J. Antony, S. Erlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  22. S. Seritan, C. Bannwarth, B. S. Fales, E. G. Hohenstein, C. M. Isborn, S. I. L. Kokkila-Schumacher, X. Li, F. Liu, N. Luehr, J. W. Snyder, WIREs Comput. Mol. Sci., 2020, 11, e1494; DOI: https://doi.org/10.1002/wcms.1494.

    Google Scholar 

  23. T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580; DOI: https://doi.org/10.1002/jcc.22885.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Khrenova.

Additional information

Based on the materials of the XXXIII Symposium “Modern Chemical Physics” (September 24–October 4, 2021, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 915–920, May, 2022.

The research is carried out using the equipment of the shared research facilities of HPC computing resources of the Lomonosov Moscow State University.

This work was financially supported by the Russian Science Foundation (Project No. 18-74-10056).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivitskaya, A.V., Khrenova, M.G. Molecular modeling of ceftriaxone activation in the active sites of penicillin-binding proteins 2. Russ Chem Bull 71, 915–920 (2022). https://doi.org/10.1007/s11172-022-3490-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3490-6

Key words

Navigation