Skip to main content
Log in

Addition of the oxirane derivatives to CO2 catalyzed by Lewis bases under mild conditions

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The addition of the oxirane derivatives to CO2 was found to occur without Lewis acid involvement but requires the presence of the Lewis base. The reaction was carried out at atmospheric pressure by CO2 bubbling through the starting ether in the presence of a source of halide anion or trichloroacetate anion, which provides the formation of ethylenecarbonate derivatives in preparative amounts. The reactivity of halide anions in the addition of the studied oxirane derivatives to CO2 decreases in the order I > Br > Cl > F >> Cl3CCOO. The quantum chemical calculations of the reaction of CO2 with epichlorohydrin show that the reaction consists of consecutive processes of nucleophilic addition and nucleophilic ipso-substitution, which explains the catalytic effect of the Lewis bases and the order of their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. F. Arico, P. Tundo, Russ. Chem. Rev., 2010, 79, 479; DOI: https://doi.org/10.1070/RC2010v079n06ABEH004113.

    Article  CAS  Google Scholar 

  2. I. S. Gabov, L. A. Khamidullina, I. S. Puzyrev, M. A. Ezhikova, M. I. Kodess, A. V. Pestov, Russ. J. Org. Chem., 2020, 55, 2079; DOI: https://doi.org/10.31857/S0514749220120058.

    Article  Google Scholar 

  3. A. M. Semenova, E. F. Zhilina, A. V. Mekhaev, A. Ya. Zapevalov, A. V. Pestov, Russ. Chem. Bull., 2020, 69, 265; DOI: https://doi.org/10.1007/s11172-020-2755-1.

    Article  CAS  Google Scholar 

  4. A. M. Semenova, M. G. Pervova, M. A. Ezhikova, M. I. Kodess, A. Ya. Zapevalov, A. V. Pestov, Russ. J. Org. Chem., 2019, 55, 771; DOI: https://doi.org/10.1134/S1070428019060058.

    Article  CAS  Google Scholar 

  5. V. A. Kuznetsov, M. G. Pervova, A. V. Pestov, Russ. J. Org. Chem., 2014, 50, 654; DOI: https://doi.org/10.1134/S1070428014050066.

    Article  CAS  Google Scholar 

  6. A. M. Skundin, O. N. Efimov, O. V. Yarmolenko, Russ. Chem. Rev., 2002, 71, 329; DOI: https://doi.org/10.1070/rc2002v071n04abeh000706.

    Article  CAS  Google Scholar 

  7. A. R. Garifullina, V. A. Sysoev, Vestn. Kazan. Tekhnolog. Un-ta [Bull. of Kazan Technol. Univ.], 2013, 16, 63 (in Russian).

    CAS  Google Scholar 

  8. A. R. Garifullina, V. A. Sysoev, Vestn. Kazan. Tekhnolog. Un-ta [Bull. of Kazan Technol. Univ.], 2015, 18, 146 (in Russian).

    CAS  Google Scholar 

  9. S. A. Kutsenko, Osnovy toksikologii [Foundations of Toxicology], Foliant, St. Petersburg, 2004, 720 pp. (in Russian).

    Google Scholar 

  10. V. A. Kuznetsov, M. G. Pervova, A. V. Pestov, Russ. J. Org. Chem., 2013, 49, 1859; DOI: https://doi.org/10.1134/S1070428013120300.

    Article  CAS  Google Scholar 

  11. F. S. H. Simanjuntak, S. R. Lim, B. S. Ahn, H. S. Kim, H. Lee, Appl. Catal. A., 2014, 484, 33; DOI: https://doi.org/10.1016/j.apcata.2014.06.028.

    Article  CAS  Google Scholar 

  12. J. Mindemark, L. Imholt, J. Montero, D. Brandell, J. Polym. Sci. A., 2016, 54, 2128; DOI: https://doi.org/10.1002/pola.28080.

    Article  CAS  Google Scholar 

  13. B. Gabriele, R. Mancuso, G. Salerno, G. Ruffolo, M. Costa, A. Dibenedetto, Tetrahedron Lett., 2009, 50, 7330; DOI: https://doi.org/10.1016/j.tetlet.2009.10.054.

    Article  CAS  Google Scholar 

  14. S. E. Lyubimov, A. A. Zvinchuk, V. A. Davankov, B. Chowdhury, A. V. Arzumanyan, A. M. Muzafarov, Russ. Chem. Bull., 2020, 69, 1076; DOI: https://doi.org/10.1007/s11172-020-2869-5.

    Article  CAS  Google Scholar 

  15. A. R. Elman, S. A. Zharkov, L. V. Ovsyannikova, Chem-Engineering, 2019, 3, 1; DOI: https://doi.org/10.3390/chemengineering3020046.

    Google Scholar 

  16. S. E. Lyubimov, A. A. Zvinchuk, B. Chowdhury, V. A. Davankov, Russ. Chem. Bull., 2020, 69, 1598; DOI: https://doi.org/10.1007/s11172-020-2941-1.

    Article  CAS  Google Scholar 

  17. A. H. Chowdhury, P. Bhanja, N. Salam, A. Bhaumik, Sk. M. Islam, Molecul. Catal., 2018, 450, 46; DOI: https://doi.org/10.1016/j.mcat.2018.03.003.

    Article  CAS  Google Scholar 

  18. M. Ding, H.-L. Jiang, Chem. Commun., 2016, 52, 12294; DOI: https://doi.org/10.1039/C6CC07149J.

    Article  CAS  Google Scholar 

  19. S. E. Lyubimov, M. V. Sokolovskaya, B. Chowdhury, A. V. Arzumanyan, R. S. Tukhvatshin, L. F. Ibragimova, A. A. Tyutyunov, V. A. Davankov, A. M. Muzafarov, Russ. Chem. Bull., 2019, 68, 1866.

    Article  CAS  Google Scholar 

  20. E. Witek, A. Kochanowski, E. Bortel, Macromol. Rapid Commun., 2000, 21, 1108.

    Article  CAS  Google Scholar 

  21. D. V. Nesterov, L. S. Molochnikov, M. I. Kodess, E. G. Matochkina, O. V. Koryakova, Yu. G. Yatluk, A. V. Pestov, Russ. J. Appl. Chem., 2013, 86, 777; DOI: https://doi.org/10.1134/S1070427213050273.

    Article  CAS  Google Scholar 

  22. V. Butera, N. Russo, U. Cosentino, C. Greco, G. Moro, D. Pitea, E. Sicilia, ChemCatChem, 2016, 8, 1167; DOI: https://doi.org/10.1002/cctc.201501272.

    Article  CAS  Google Scholar 

  23. X. Liu, S. Zhang, Q.-W. Song, X.-F. Liu, R. Ma, L.-N. He, Green Chem., 2016, 18, 2871; DOI: https://doi.org/10.1039/c5gc02761f.

    Article  CAS  Google Scholar 

  24. X. N. Aoyagi, Y. Furusho, T. Endo, J. Polym. Sci. A., 2013, 51, 1230; DOI: https://doi.org/10.1002/pola.26492.

    Article  CAS  Google Scholar 

  25. Q.-W. Song, P. Liu, Q.-N. Zhao, J.-Y. Li, K. Zhang, Synthesis, 2019, 51, 739; DOI:https://doi.org/10.1055/s-0037-1611058.

    Article  CAS  Google Scholar 

  26. S. R. Ue, C. K. Young, Adv. Synth. Catal., 2014, 356, 1955; DOI: https://doi.org/10.1002/adsc.201400047.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pestov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1118–1123, June, 2021.

This work was carried out in terms of state assignment of the I. Ya. Postovsky Institute of Organic Synthesis (Ural Branch of Russian Academy of Sciences) (Theme No. AAAA-A19-119012290116-9).

This work does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabov, I.S., Kuznetsov, V.A., Puzyrev, I.S. et al. Addition of the oxirane derivatives to CO2 catalyzed by Lewis bases under mild conditions. Russ Chem Bull 70, 1118–1123 (2021). https://doi.org/10.1007/s11172-021-3192-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3192-5

Key words

Navigation