Skip to main content
Log in

2,2-Dimethyl-3-[(4-methylphenyl)sulfonyl]-2,3-dihydro-1,3,2-benzoxazasilole: synthesis, properties, and structure

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

2,2-Dimethyl-3-[(4-methylphenyl)sulfonyl]-2,3-dihydro-1,3,2-benzoxazasilole was synthesized by the reaction of N-(2-hydroxyphenyl)-4-methylbenzenesulfonamide with dimethyl-dichlorosilane or N, N-bis(dimethylamino)dimethylsilane in 68 and 96% yield, respectively. The structure of the new compound was assigned using NMR and IR spectroscopy and confirmed by X-ray diffraction. In the crystal, the silole molecules are linked to each other by short O⋯H-C contacts (∼2.6 Å) between the oxygen atoms of the bicyclic moiety and the methyl hydrogen atoms of adjacent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhadra, H. Yamamoto, Chem. Rev., 2018, 118, 3391; DOI: https://doi.org/10.1021/acs.chemrev.7b00514.

    Article  CAS  Google Scholar 

  2. C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev., 2018, 47, 6603; DOI: https://doi.org/10.1039/c8cs00201k.

    Article  CAS  Google Scholar 

  3. P. Ribiere, V. Declerck, J. Martinez, F. Lamaty, Chem. Rev., 2006, 106, 2249; DOI: https://doi.org/10.1021/cr0300587.

    Article  CAS  Google Scholar 

  4. J. D. Wilden, J. Chem. Res., 2010, 34, 541; DOI: https://doi.org/10.3184/030823410X12857514635822.

    Article  CAS  Google Scholar 

  5. J. A. Halfen, Curr. Org. Chem., 2005, 9, 657; DOI: https://doi.org/10.2174/1385272053765024.

    Article  CAS  Google Scholar 

  6. H. Yang, R. G. Carter, Synlett., 2010, 2827; DOI: https://doi.org/10.1055/s-0030-1259020.

  7. F. Carta, C. T. Supuran, A. Scozzafava, Future Med. Chem., 2014, 6, 1149; DOI: https://doi.org/10.4155/fmc.14.68.

    Article  CAS  Google Scholar 

  8. T. V. Wani, S. Bua, P. S. Khude, A. H. Chowdhary, C. T. Supuran, M. P. Toraskar, J. Enzym. Inhib. Med. Chem., 2018, 33, 962; DOI: https://doi.org/10.1080/14756366.2018.1471475.

    Article  CAS  Google Scholar 

  9. S. S. A. Shah, G. Rivera, M. Ashfaq, Mini Rev. Med. Chem., 2013, 13, 70; DOI: https://doi.org/10.2174/1389557511307010070.

    Article  CAS  Google Scholar 

  10. R. Kh. Bagautdinova, L. I. Vagapova, A. V. Smolobochkin, A. S. Gazizov, A. R. Burilov, M. A. Pudovik, A. D. Voloshina, Mendeleev Commun., 2019, 29, 686; DOI: https://doi.org/10.1016/j.mencom.2019.11.028.

    Article  CAS  Google Scholar 

  11. I. Melnikova, Nat. Rev. Drug Discov., 2005, 4, 453; DOI: https://doi.org/10.1038/nrd1755.

    Article  CAS  Google Scholar 

  12. A. Bertolini, A. Ottani, M. Sandrini, Curr. Med. Chem., 2002, 9, 1033; DOI: https://doi.org/10.2174/0929867024606650.

    Article  CAS  Google Scholar 

  13. J. Dong, Y. Wang, Q. Xiang, X. Lv, W. Weng, Q. Zeng, Adv. Synth. Catal., 2013, 355, 692; DOI: https://doi.org/10.1002/adsc.201200752.

    Article  CAS  Google Scholar 

  14. D.-W. Zhang, X. Zhao, J.-L. Hou, Z.-T. Li, Chem. Rev., 2012, 112, 5271; DOI: https://doi.org/10.1021/cr300116k.

    Article  CAS  Google Scholar 

  15. N. N. Farshori, A. Ahmad, A. U. Khan, A. Rauf, Eur. J. Med. Chem., 2011, 46, 1433; DOI: https://doi.org/10.1016/j.ejmech.2011.01.070.

    Article  CAS  Google Scholar 

  16. P. Panini, R. G. Gonnade, D. Chopra, New J. Chem., 2016, 40, 4981; DOI: https://doi.org/10.1039/C5NJ03211C.

    Article  CAS  Google Scholar 

  17. H.-Y. Lee, S.-L. Pan, M.-C. Su, Y.-M. Liu, C.-C. Kuo, Y.-T. Chang, J.-S. Wu, C.-Y. Nien, S. Mehndiratta, C.-Y. Chang, S.-Y. Wu, M.-J. Lai, J.-Y. Chang, J.-P. Liou, J. Med. Chem., 2013, 56, 8008; DOI: https://doi.org/10.1021/jm4011115-8018.

    Article  CAS  Google Scholar 

  18. J. Kim, P. Chun, H. R. Moon, Bull. Korean Chem. Soc., 2013, 34, 1487; DOI:https://doi.org/10.5012/BKCS.2013.34.5.1487.

    Article  CAS  Google Scholar 

  19. R. Mahesh, V. L. Nayak, K. S. Babu, S. Riyaz, T. B. Shaik, G. B. Kumar, P. L. Mallipeddi, C. R. Reddy, K. C. Shekar, J. Jose, N. Nagesh, A. Kamal, Chem. Med. Chem., 2017, 12, 678; DOI: https://doi.org/10.1002/cmdc.201600643.

    Article  CAS  Google Scholar 

  20. J. Mortier, C. Rakers, M. Bermudez, M. S. Murgueitio, S. Riniker, G. Wolber, Drug Discov. Today, 2015, 20, 686; DOI: https://doi.org/10.1016/j.drudis.2015.01.003.

    Article  CAS  Google Scholar 

  21. H. Zhao, A. Caflisch, Eur. J. Med. Chem., 2015, 91, 4; DOI: https://doi.org/10.1016/j.ejmech.2014.08.004-14.

    Article  CAS  Google Scholar 

  22. Structure-Based Drug Discovery, Ed. L. W. Tari, Springer, New York, 2012, 385 p.; DOI: https://doi.org/10.1007/978-1-61779-520-6.

    Google Scholar 

  23. Noncovalent Forces, Ed. S. Scheiner, Springer, Cham Heidelberg, 2015, 529 p.; DOI: https://doi.org/10.1007/978-3-319-14163-3.

    Google Scholar 

  24. E. Lukevics, S. Germane, I. Segal, A. Zablotskaya, Chem. Heterocycl. Compd., 1997, 33, 234; DOI: https://doi.org/10.1007/BF02256766.

    Article  CAS  Google Scholar 

  25. M. V. Kashutina, S. L. Ioffe, V. A. Tartakovskii, Russ. Chem. Rev., 1975, 44, 1620; DOI: https://doi.org/10.1070/RC1975v044n09ABEH002373.

    Article  CAS  Google Scholar 

  26. M. D. Mizhiritskii, Yu. A. Yuzhelevskii, Russ. Chem. Rev., 1987, 56, 355; DOI: https://doi.org/10.1070/RC1987v056n04ABEH003276.

    Article  Google Scholar 

  27. G. Look, Silylating Agents, Buchs, Fluka Chemie AG, 1995, 43 p.

  28. G. A. Patani, E. J. LaVoie, Chem. Rev., 1996, 96, 3147; DOI: https://doi.org/10.1021/cr950066q.

    Article  CAS  Google Scholar 

  29. N. A. Meanwell, J. Med. Chem., 2011, 54, 2529; DOI: https://doi.org/10.1021/jm1013693-2591.

    Article  CAS  Google Scholar 

  30. J. S. Mills, G. A. Showell, Expert Opin. Invest. Drugs, 2004, 13, 1149; DOI: https://doi.org/10.1517/13543784.13.9.1149.

    Article  CAS  Google Scholar 

  31. A. K. Franz, S. O. Wilson, J. Med. Chem., 2013, 56, 388; DOI: https://doi.org/40510.1021/jm3010114.

    Article  CAS  Google Scholar 

  32. A. Yu. Nikonov, I. V. Sterkhova, V. Yu. Serykh, N. A. Kolyvanov, N. F. Lazareva, J. Mol. Struct., 2019, 1198, 126782; DOI: https://doi.org/10.1016/j.molstruc.2019.07.029.

    Article  CAS  Google Scholar 

  33. N. F. Lazareva, A. Yu. Nikonov, N. N. Chipanina, L. P. Oznobikhina, I. V. Sterkhova, A. I. Albanov, J. Organomet. Chem., 2017, 846, 88; DOI: https://doi.org/10.1016/j.jorganchem.2017.05.061.

    Article  CAS  Google Scholar 

  34. Y. Tanabe, T. Misaki, M. Kurihara, A. Iida, Y. Nishii, Chem. Commun., 2002, 1628; DOI: https://doi.org/10.1039/b203783c.

  35. B. Minkovich, I. Ruderfer, A. Kaushansky, D. Bravo-Zhivotovskii, Y. Apeloig, Angew. Chem., Int. Ed., 2018, 57, 13261; DOI: https://doi.org/10.1002/anie.201807027.

    Article  CAS  Google Scholar 

  36. E. K. J. Lui, J. W. Brandt, L. L. Schafer, J. Am. Chem. Soc., 2018, 140, 4973; DOI: https://doi.org/10.1021/jacs.7b13783.

    Article  CAS  Google Scholar 

  37. G. Glatz, T. Schmalz, T. Kraus, F. Haarmann, G. Motz, R. Kempe, Chem. Eur. J., 2010, 16, 4231; DOI: https://doi.org/10.1002/chem.200902836.

    Article  CAS  Google Scholar 

  38. E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel, R. Riedel, Mater. Sci. (Engl.) R: Reports, 2000, 26, 97; DOI: https://doi.org/10.1016/S0927-796X(00)00008-5.

    Article  Google Scholar 

  39. G. M. Sheldrick, Acta Crystallogr., 2008, D64, 112; DOI: https://doi.org/10.1107/S010876730704393.

    Article  Google Scholar 

  40. V. Passarelli, F. Benetollo, P. Zanella, G. Carta, G. Rossetto, Dalton Trans., 2003, 1411; DOI: https://doi.org/10.1039/B212705A.

  41. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th Ed., Elsevier, 2009, 760 c.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Lazareva.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-33-00368-mol_a). The main results were obtained using equipment of the Baikal Analytical Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 386–390, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikonov, A.Y., Sterkhova, I.V. & Lazareva, N.F. 2,2-Dimethyl-3-[(4-methylphenyl)sulfonyl]-2,3-dihydro-1,3,2-benzoxazasilole: synthesis, properties, and structure. Russ Chem Bull 70, 386–390 (2021). https://doi.org/10.1007/s11172-021-3097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3097-3

Key words

Navigation