Skip to main content
Log in

Synthesis of surface-modified quantum dots

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review discusses the main methods used to obtain surface-modified quantum dots, specifically silicon, heavy metal chalcogenide and pnictide semiconductor nanoparticles. Examples of transformation processes of the grafted layer are considered. The importance of surface modification of AIIBVI- and AIIIBV-type semiconductor nanoparticles for the practical application of quantum dots is shown. It was determined that the most promising areas of their practical application are biology, medicine, and pharmacology. Special attention is paid to the hydrophilization of quantum dots, because only these materials can be used in biomedical applications. Modification of the quantum dot surface with amino acids is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ekimov, A. A. Onushchenko, J. Exp. Theor. Phys., 1981, 34, 345–349.

    Google Scholar 

  2. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett., 1988, 60, 535–537.

    CAS  Google Scholar 

  3. A. V. Safronikhin, H. V. Ehrlich, G. V. Lisichkin, Protect. Met. Phys. Chem. Surf., 2014, 50, 578–586; DOI: https://doi.org/10.1134/S2070205114050141.

    CAS  Google Scholar 

  4. J. Xu, Y. Y. Zhai, Y. Q. Cao, K. J. Chen, J. Phys. Conf. Ser., 2017, 844, 012001; DOI: https://doi.org/10.1088/1742-6596/844/1/012001.

    Google Scholar 

  5. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers, IEEE J. Quant. Electr., 2019, 55, 2000511; DOI: https://doi.org/10.1109/JQE.2019.2901508.

    CAS  Google Scholar 

  6. A. V. Kabashin, A. Singh, M. T. Swihart, I. N. Zavestovskaya, P. N. Prasad, ACS Nano, 2019, 13, 9841; DOI: https://doi.org/10.1021/acsnano.9b04610.

    CAS  Google Scholar 

  7. X. Cheng, S. B. Lowe, P. J. Reece, J. Justin, Chem. Soc. Rev., 2014, 43, 2680; DOI: https://doi.org/10.1039/C3CS60353A.

    CAS  Google Scholar 

  8. A. Das, P. T. Snee, Chem. Phys. Chem., 2016, 17, 598–617; DOI: https://doi.org/10.1002/cphc.201500837.

    CAS  Google Scholar 

  9. S. Chinnathambi, S. Chen, S. Ganesan, N. Hanagata, Adv. Health. Mater., 2014, 3, 10; DOI: https://doi.org/10.1002/adhm.201300157.

    CAS  Google Scholar 

  10. A. Mukerjee, A. P. Ranjan, J. K. Vishwanatha, Curr. Med. Chem., 2012, 19, 3714; DOI: https://doi.org/10.2174/092986712801661176.

    CAS  Google Scholar 

  11. N. P. Truong, M. R. Whittaker, C. W. Mak, T. P. Davis, Exp. Opin. Drug Deliv., 2015, 12, 129–142; DOI: https://doi.org/10.1517/17425247.2014.950564.

    CAS  Google Scholar 

  12. L. Loomba, T. Scarabelli, Therap. Deliv., 2013, 4, 1179; DOI: https://doi.org/10.4155/tde.13.74.

    CAS  Google Scholar 

  13. L. E. Brus, J. Chem. Phys., 1984, 80, 4403.

    CAS  Google Scholar 

  14. G. Chaudhuri, S. Paria, Chem. Rev., 2012, 112, 2373; DOI: https://doi.org/10.1021/cr100449n.

    Google Scholar 

  15. C. Carrillo-Carrion, S. Cardenas, B. M. Simonet, M. Valcarcel, Chem. Commun., 2009, 5214; DOI: https://doi.org/10.1039/b904381k.

  16. P. P. Gladyshev, Yu. V. Tumanov, S. A. Ibragimova, V. V. Kuznetsov, E. D. Gribova, Russ. Chem. Bull., 2018, 67, 600; DOI: https://doi.org/10.1007/s11172-018-2114-7.

    CAS  Google Scholar 

  17. A. Kharin, V. Lysenko, A. Rogov, Yu. Ryabchikov, A. Geloen, I. Tishchenko, O. Marty, P. Sennikov, R. Kornev, I. Zavestovskaya, A. Kabashin, V. Timoshenko, Adv. Optical Materials, 2019, 1–8; DOI: https://doi.org/10.1002/adom.201801728.

  18. N. Zhang, X. Liu, Z. Wei, H. Liu, J. Peng, L. Zhou, H. Li, H. Fan, Nanomaterials, 2019, 9, 369; DOI: https://doi.org/10.3390/nano9030369.

    CAS  Google Scholar 

  19. R. B. Vasiliev, D. N. Dirin, Kvantovye tochki: sintez, svoystva, primenenie [Quantum Dots: Synthesis, Properties, Applications], Moscow, FNM MGU, 2007, 34 pp. (www.nanometer.ru/2009/10/27/1256594871553/PROP_FILE_files_5/qd.pdf) (in Russian).

    Google Scholar 

  20. D. Chen, A. Wang, M. A. Buntine, G. Jia, ChemElectroChem, 2019, 6, 4709; DOI: https://doi.org/10.1002/celc.201900838.

    CAS  Google Scholar 

  21. G. A. Marcelo, C. Lodeiro, J. L. Capelo, J. Lorenzo, E. Oliveira, Mater. Sci. Eng. C, 2020, 106, 110104; DOI: https://doi.org/10.1016/j.msec.2019.110104.

    CAS  Google Scholar 

  22. V. A. Oleynikov, A. V. Sukhanova, I. R. Nabiev, Ross. nanotekhn. [Russ. Nanotechn.], 2007, 2, 160 (in Russian).

    Google Scholar 

  23. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706; DOI: https://doi.org/10.1021/ja00072a025.

    Article  CAS  Google Scholar 

  24. Z. Yuan, T. Nakamura, S. Chinnathambi, Y. Pu, N. Shirahata, K. Matsuishi, ChemNanoMat., 2019, 5, 1137; DOI: https://doi.org/10.1002/cnma.201900289.

    CAS  Google Scholar 

  25. Yu. V. Kargina, A. M. Perepukhov, A. Yu. Kharin, E. A. Zvereva, A. V. Koshelev, S. V. Zinovyev, A. V. Maximychev, A. F. Alykova, N. V. Sharonova, V. P. Zubov, M. V. Gulyaev, Yu. A. Pirogov, A. N. Vasiliev, A. A. Ischenko, V. Yu. Timoshenko, Phys. Stat. Solid. A, 2019, 216, 1800897; DOI: https://doi.org/10.1002/pssa.201800897.

    Google Scholar 

  26. L. A. Aslanov, V. N. Zakharov, A. V. Pavlikov, S. V. Savilov, V. Yu. Timoshenko, A. V. Yatsenko, Russ. J. Coord. Chem., 2013, 39, 427; DOI: https://doi.org/10.1134/S1070328414040034.

    CAS  Google Scholar 

  27. C. M. Hessel, E. J. Henderson, J. G. C. Veinot, Chem. Mater., 2006, 18, 6139; DOI: https://doi.org/10.1021/cm0602803.

    CAS  Google Scholar 

  28. M. Dasog, K. Bader, J. G. C. Veinot, Chem. Mater., 2015, 27, 1153; DOI: https://doi.org/10.1021/acs.chemmater.5b00115.

    CAS  Google Scholar 

  29. Z. Xu, D. Wang, M. Guan, X. Liu, Y. Yang, D. Wei, C. Zhao, H. Zhang, ACS Appl. Mater. Interfaces, 2012, 4, 3424; DOI: https://doi.org/10.1021/am300877v.

    CAS  Google Scholar 

  30. R. Savla, O. Taratula, O. Garbuzenko, T. Minko, J. Controll. Rel., 2011, 153, 16; DOI: https://doi.org/10.1016/j.jconrel.2011.02.015.

    CAS  Google Scholar 

  31. M. G. Bawendi, A. K. Kortan, M. L. Steigerwald, L. E. Brus, J. Chem. Phys., 1989, 91, 7282; DOI: https://doi.org/10.1063/1.457295.

    CAS  Google Scholar 

  32. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev., 2005, 105, 1025; DOI: https://doi.org/10.1021/cr030063a.

    CAS  Google Scholar 

  33. M. A. Hines, P. Guyot-Sionnest, J. Phys. Chem. B, 1998, 102, 3655; DOI: https://doi.org/10.1021/jp9810217.

    CAS  Google Scholar 

  34. P. Moraitis, R. E. I. Schropp, W. G. J. H. M. van Sark, Opt. Mater., 2018, 84, 636; DOI: https://doi.org/10.1016/j.optmat.2018.07.034.

    CAS  Google Scholar 

  35. A. M. Wagner, J. M. Knipe, G. Orive, N. A. Peppas, Acta Biomater., 2019, 94, 44–63; DOI: https://doi.org/10.1016/j.actbio.2019.05.022.

    CAS  Google Scholar 

  36. A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, T. S. Perova, R. A. Moore, D. V. Talapin, A. L. Rogach, Y. Masumoto, I. Nabiev, Phys. Rev. B, 2003, 68, 165306; DOI: https://doi.org/10.1103/PhysRevB.68.165306.

    Google Scholar 

  37. T. N. Shcherba, K. V. Lupandina, M. P. Zhilenko, G. P. Muravieva, H. V. Ehrlich, G. V. Lisichkin, Russ. Chem. Bull., 2011, 60, 1571–1575; DOI: https://doi.org/10.1007/s11172-011-0233-5.

    CAS  Google Scholar 

  38. Yu. G. Galyametdinov, D. O. Sagdeev, V. K. Voronkova, A. A. Sukhanov, R. R. Shamilov, Russ. Chem. Bull., 2018, 67, 172; DOI: https://doi.org/10.1007/s11172-018-2055-1.

    CAS  Google Scholar 

  39. S. B. Brichkin, Colloid J., 2015, 77, 393; DOI: https://doi.org/10.1134/S1061933X15040043.

    CAS  Google Scholar 

  40. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller, H. Weller, J. Phys. Chem., 2002, 106, 7177; DOI: https://doi.org/10.1021/jp025541k.

    CAS  Google Scholar 

  41. R. A. Sperling, W. J. Parak, Phil. Trans. Roy. Soc. A, 2010, 368, 1333; DOI: https://doi.org/10.1098/rsta.2009.0273.

    CAS  Google Scholar 

  42. D. S. Mazing, O. A. Aleksandrova, L. B. Matyushkin, V. A. Moshnikov, Izv. SPbGETU “LETI” [Bull. St.-Petersb. State Electrotech. Univ. “LETI”], 2014, 7, 15 (in Russian).

    Google Scholar 

  43. E. I. Zen’kevich, K. fon Borciskovski, Russ. Chem. Bull., 2018, 7, 1220; DOI: https://doi.org/10.1007/s11172-018-2205-5.

    Google Scholar 

  44. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science, 1998, 281, 2013; DOI: https://doi.org/10.1126/science.281.5385.2013.

    CAS  Google Scholar 

  45. S. B. Brichkin, V. F. Razumov, Russ. Chem. Rev., 2016, 85, 1297; DOI: https://doi.org/10.1070/RCR4656.

    CAS  Google Scholar 

  46. Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang, L. H. Wang, Adv. Mater., 2008, 20, 3416; DOI: https://doi.org/10.1002/adma.200701166.

    CAS  Google Scholar 

  47. S. Li, H. Zhao, D. Tian, Mater. Sci. Semicond. Process, 2013, 71, 16, 149; DOI: https://doi.org/10.1016/j.mssp.2012.05.013.

    Google Scholar 

  48. Y. Bao, J. Li, Y. Wang, L. Yu, J. Wang, W. Du, L. Lou, Z. Zhu, H. Peng, J. Zhu, Opt. Mater., 2012, 34, 1588; DOI: https://doi.org/10.1016/j.optmat.2012.03.033.

    CAS  Google Scholar 

  49. H. Han, G. D. Francesco, M. M. Maye, J. Phys. Chem., 2010, 114, 19270; DOI: https://doi.org/10.1021/jp107702b.

    CAS  Google Scholar 

  50. T. Tsuzuki, P. G. McCormick, Appl. Phys. A Mater. Sci. Process., 1997, 65, 607.

    CAS  Google Scholar 

  51. S. Sain, S. K. Pradhan, J. Alloys Compd., 2011 509, 4176; DOI: https://doi.org/10.1016/j.jallcom.2011.01.035.

    CAS  Google Scholar 

  52. R. Jackeray, C. K. V. Zainul Abid, G. Singh, S. Jain, S. Chattopadhyaya, S. Sapra, T. G. Shrivastav, H. Singh, Talanta, 2011, 84, 952; DOI: https://doi.org/10.1016/j.talanta.2011.02.052.

    CAS  Google Scholar 

  53. Y.-C. Yeh, D. Patra, B. Yan, K. Saha, O. R. Miranda, C. K. Kim, V. M. Rotello, Chem. Commun., 2011, 47, 3069; DOI: https://doi.org/10.1039/c0cc04975a.

    CAS  Google Scholar 

  54. D. Jańczewski, N. Tomczak, M. Y. Han, G. J. Vancso, Nat. Protoc., 2011, 6, 1546; DOI: https://doi.org/10.1038/nprot.2011.381.

    Google Scholar 

  55. H. V. Ehrlich, T. N. Shcherba, M. P. Zhilenko, G. P. Muravieva, G. V. Lisichkin, Russ. Chem. Bull., 2012, 61, 1705–1710; DOI: https://doi.org/10.1007/s11172-012-0236-x.

    CAS  Google Scholar 

  56. Khimiya privitykh poverkhnostnykh soedineniy [Chemistry of Grafted Surface Compounds], Ed. G. V. Lisichkina, Moscow, 2003, Fizmatlit, 592 pp. (in Russian).

  57. K. Bourzac, Nature, 2013, 493, 283; DOI: https://doi.org/10.1038/493283a.

    CAS  Google Scholar 

  58. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, J. E. Bowers, IEEE J. Quant. Electr., 2019, 55, 2000511; DOI: https://doi.org/10.1109/JQE.2019.2901508.

    CAS  Google Scholar 

  59. Detonatsionnye nanoalmazy. Tekhnologiya, struktura, svoystva i primeneniya [Detonation Nanodiamonds. Technology, Structure, Properties, and Applicationsx], Eds A. Ya. Vulya, O. A. Shenderova, FTI im. A. F. Ioffe, St.-Petersburg, 2016, 380 pp. (in Russian).

  60. E. D. Grayfer, V. G. Makotchenko, A. S. Nazarov, S. J. Kim, V. E. Fedorov, Russ. Chem. Rev., 2011, 80, 751; DOI: https://doi.org/10.1070/RC2011v080n08ABEH004181.

    CAS  Google Scholar 

  61. R. Yu. Yakovlev, P. G. Mingalev, N. B. Leonidov, G. V. Lisichkin, Khim.-Farm. Zh. [Chem.-Pharm. J.], 2020, 54, 29–44; DOI: https://doi.org/10.30906/0023-1134-2020-54-4-29-44 (in Russian).

    Google Scholar 

  62. L. A. Chernozatonskii., A. A. Artyukh, D. G. Kvashnin, JETP Lett., 2012, 55, 266–270; DOI: https://doi.org/10.1134/S0021364012050049.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Lisichkin or A. Yu. Olenin.

Additional information

Russian Chemical Bulletin, International Edition, Vol. 69, No. 10, pp. 1819–1828, October, 2020

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1819–1828, October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisichkin, G.V., Olenin, A.Y. Synthesis of surface-modified quantum dots. Russ Chem Bull 69, 1819–1828 (2020). https://doi.org/10.1007/s11172-020-2968-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2968-3

Key words

Navigation