Skip to main content

Advertisement

Log in

Investigating Gender Differences in Mathematics and Science: Results from the 2011 Trends in Mathematics and Science Survey

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The underrepresentation of women in science, technology, engineering, and mathematics (STEM)-related fields remains a concern for educators and the scientific community. Gender differences in mathematics and science achievement play a role, in conjunction with attitudes and self-efficacy beliefs. We report results from the 2011 Trends in Mathematics and Science Study (TIMSS), a large international assessment of eighth grade students’ achievement, attitudes, and beliefs among 45 participating nations (N = 261,738). Small- to medium-sized gender differences were found for most individual nations (from d = −.60 to +.31 in mathematics achievement, and d = −.60 to +.26 for science achievement), although the direction varied and there were no global gender differences overall. Such a pattern cross-culturally is incompatible with the notion of immutable gender differences. Additionally, there were different patterns between OECD and non-OECD nations, with girls scoring higher than boys in mathematics and science achievement across non-OECD nations. An association was found between gender differences in science achievement and national levels of gender equality, providing support for the gender segregation hypothesis. Furthermore, the performance of boys was more variable than that of girls in most nations, consistent with the greater male variability hypothesis. Boys reported more favorable attitudes towards mathematics and science, and girls reported lower self-efficacy beliefs. While the gender gap in STEM achievement may be closing, there are still large sections of the world where differences remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, J., Lin, H.-S., Treagust, D., Ross, S., & Yore, L. (2007). Using large-scale assessment datasets for research in science and mathematics education: programme for international student assessment (PISA). International Journal of Science and Mathematics Education, 5(4), 591–614. doi:10.1007/s10763-007-9090-y.

    Article  Google Scholar 

  • Baenninger, M., & Newcombe, N. S. (1989). The role of experience in spatial test performance: a meta-analysis. Sex Roles, 20(5), 327–344. doi:10.1007/BF00287729.

    Article  Google Scholar 

  • Baker, D. P., & Jones, D. P. (1993). Creating gender equality: cross-national gender stratification and mathematical performance. Sociology of Education, 66(2), 91–103. doi:10.2307/2112795.

    Article  Google Scholar 

  • Barnes, G., McInerney, D. M., & Marsh, H. W. (2005). Exploring sex differences in science enrolment intentions: an application of the general model of academic choice. The Australian Educational Researcher, 32(2), 1–23. doi:10.1007/BF03216817.

    Article  Google Scholar 

  • Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863. doi:10.1073/pnas.0910967107.

    Article  Google Scholar 

  • Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: their nature, effects, and possible causes. Behavioral and Brain Sciences, 11(2), 169–232. doi:10.1017/S0140525X00049670.

    Article  Google Scholar 

  • Benbow, C. P., Lubinski, D., Shea, D. L., & Eftekhari-Sanjani, H. (2000). Sex differences in mathematical reasoning ability at age 13: their status 20 years later. Psychological Science, 11(6), 474–480. doi:10.1111/1467-9280.00291.

    Article  Google Scholar 

  • Bernstein, B., Jacobson, R., & Russo, N. F. (2010). Mentoring women in science, technology, engineering and mathematics fields. In F. Denmark, M. E. Reuder, & A. M. Austria (Eds.), A handbook for women mentors: transcending barriers of stereotype, race, and ethnicity (pp. 43–64). Westport, CT: Prager.

    Google Scholar 

  • Bhanot, R. T., & Jovanovic, J. (2009). The links between parent behaviors and boys’ and girls’ science achievement beliefs. Applied Developmental Science, 13(1), 42–59. doi:10.1080/10888690802606784.

    Article  Google Scholar 

  • Borenstein, M., & Rothstein, H. R. (1999). Comprehensive meta-analysis: a computer program for research synthesis. Englewood, NJ: BioStat.

    Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. West Sussex: Wiley.

    Book  Google Scholar 

  • Buckley, S. (2016). Gender and sex differences in student participation, achievement and engagement in mathematics. Melbourne: Australian Council for Educational Research.

    Google Scholar 

  • Burkam, D. T., Lee, V. E., & Smerdon, B. A. (1997). Gender and science learning early in high school: subject matter and laboratory experiences. American Educational Research Journal, 34(2), 297–331. doi:10.3102/00028312034002297.

    Article  Google Scholar 

  • Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences, 108(8), 3157–3162. doi:10.1073/pnas.1014871108.

    Article  Google Scholar 

  • Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114(4), 924–976. doi:10.1086/595942.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the Behavioral sciences (2nd ed.). Hillsdale: Lawrence Earlbaum Associates.

    Google Scholar 

  • Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12(3), 258–261. doi:10.1111/1467-9280.00347.

    Article  Google Scholar 

  • Dwyer, C. A., & Johnson, L. (1997). Grades, accomplishments, and correlates. In W. Willingham & N. S. Cole (Eds.), Gender and fair assessment (pp. 127–156). Mahwah: Erlbaum.

    Google Scholar 

  • Eagly, A. H., Wood, W., & Diekman, A. B. (2000). Social role theory of sex differences and similarities: a current appraisal. In T. Eckes & H. M. Trautner (Eds.), The developmental social psychology of gender (pp. 123–174). Mahwah: Lawrence Erlbaum Associatiates.

    Google Scholar 

  • Eccles, J. S. (1987). Gender roles and women’s achievement-related decisions. Psychology of Women Quarterly, 11(2), 135–172. doi:10.1111/j.1471-6402.1987.tb00781.x.

    Article  Google Scholar 

  • Eccles, J. S. (1994). Understanding women’s educational and occupational choices. Psychology of Women Quarterly, 18(4), 585–609. doi:10.1111/j.1471-6402.1994.tb01049.x.

    Article  Google Scholar 

  • Eccles, J. S. (2007). Where are all the women? Gender differences in participation in physical science and engineering. In S. J. Ceci (Ed.), Why aren’t more women in science? Top researchers debate the evidence (pp. 199–210). Washington DC: American Psychological Association.

    Chapter  Google Scholar 

  • Eccles, J. S. (2013). Gender and achievement choices. In E. T. Gershoff, R. S. Mistry, & D. Crosby (Eds.), Societal contexts of child development: pathways of influence and implications for practice and policy (pp. 19–34). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Else-Quest, N. M., & Grabe, S. (2012). The political is personal: Measurement and application of nation-level indicators of gender equity in psychological research. Psychology of Women Quarterly, 36(2), 131–144. doi:10.1177/0361684312441592.

    Article  Google Scholar 

  • Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103–127. doi:10.1037/a0018053.

    Article  Google Scholar 

  • Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293–309. doi:10.1177/0361684313480694.

    Article  Google Scholar 

  • Feingold, A. (1992). Sex differences in variability in intellectual abilities: a new look at an old controversy. Review of Educational Research, 62(1), 61–84. doi:10.3102/00346543062001061.

    Article  Google Scholar 

  • Feingold, A. (1994). Gender differences in variability in intellectual abilities: a cross-cultural perspective. Sex Roles, 30(1), 81–92. doi:10.1007/BF01420741.

    Article  Google Scholar 

  • Feniger, Y. (2011). The gender gap in advanced math and science course taking: does same-sex education make a difference? Sex Roles, 65(9), 670–679. doi:10.1007/s11199-010-9851-x.

    Article  Google Scholar 

  • Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21(1), 55–69. doi:10.1007/BF00311015.

    Article  Google Scholar 

  • Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74(2), 435–452. doi:10.1037/0022-3514.74.2.435.

    Article  Google Scholar 

  • Gallagher, A. M., & Kaufman, J. C. (Eds.). (2005). Gender differences in mathematics. New York: Cambridge University Press.

    Google Scholar 

  • Geary, D. C. (2010). Male, female: the evolution of human sex differences (2nd ed.). Washington DC: American Psychological Association.

    Book  Google Scholar 

  • Goldman, A. D., & Penner, A. M. (2014). Exploring international gender differences in mathematics self-concept. International Journal of Adolescence and Youth, 1–16, doi:10.1080/02673843.2013.847850.

  • Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165. doi:10.1126/science.1154094.

    Article  Google Scholar 

  • Gunderson, E., Ramirez, G., Levine, S. C., & Beilock, S. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3), 153–166. doi:10.1007/s11199-011-9996-2.

    Article  Google Scholar 

  • Halim, M. L., & Ruble, D. N. (2010). Gender identity and stereotyping in early and middle childhood. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 495–525). New York: Springer.

    Chapter  Google Scholar 

  • Halpern, D. F., Aronson, J., Reimer, N., Simpkins, S., Star, J. R., & Wentzel, K. (2007a). Encouraging girls in math and science. Washington DC: National Center for Education Research, U.S. Department of Education.

    Google Scholar 

  • Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007b). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1–51. doi:10.1111/j.1529-1006.2007.00032.x.

    Article  Google Scholar 

  • Handelsman, J., Cantor, N., Carnes, M., Denton, D., Fine, E., Grosz, B., et al. (2005). More women in science. Science, 309(5738), 1190–1191. doi:10.1126/science.1113252.

    Article  Google Scholar 

  • Hausmann, R., Tyson, L. D., & Zahidi, S. (2011). The global gender gap report 2011. Geneva: World Economic Forum.

    Google Scholar 

  • Haworth, C. M. A., Dale, P. S., & Plomin, R. (2010). Sex differences in school science performance from middle childhood to early adolescence. International Journal of Educational Research, 49(2–3), 92–101. doi:10.1016/j.ijer.2010.09.003.

    Article  Google Scholar 

  • Hedges, L. V. (2008). What are effect sizes and why do we need them? Child Development Perspectives, 2(3), 167–171. doi:10.1111/j.1750-8606.2008.00060.x.

    Article  Google Scholar 

  • Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269(5220), 41–45. doi:10.1126/science.7604277.

    Article  Google Scholar 

  • Huang, C. (2013). Gender differences in academic self-efficacy: a meta-analysis. European Journal of Psychology of Education, 28(1), 1–35. doi:10.1007/s10212-011-0097-y.

    Article  Google Scholar 

  • Hunter, J. E., & Schmidt, F. L. (2000). Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. International Journal of Selection and Assessment, 8(4), 275–292. doi:10.1111/1468-2389.00156.

    Article  Google Scholar 

  • Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581–592. doi:10.1037/0003-066X.60.6.581.

    Article  Google Scholar 

  • Hyde, J. S., & Linn, M. C. (2006). Gender similarities in mathematics and science. Science, 314(5799), 599–600. doi:10.1126/science.1132154.

    Article  Google Scholar 

  • Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gender comparisons of mathematics attitudes and affect. Psychology of Women Quarterly, 14(3), 299–324. doi:10.1111/j.1471-6402.1990.tb00022.x.

    Article  Google Scholar 

  • Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494–495. doi:10.1126/science.1160364.

    Article  Google Scholar 

  • Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-competence and values: gender and domain differences across grades one through twelve. Child Development, 73(2), 509–527. doi:10.1111/1467-8624.00421.

    Article  Google Scholar 

  • Jodl, K. M., Michael, A., Malanchuk, O., Eccles, J. S., & Sameroff, A. (2001). Parents’ roles in shaping early adolescents’ occupational aspirations. Child Development, 72(4), 1247–1266. doi:10.1111/1467-8624.00345.

    Article  Google Scholar 

  • Kane, J. M., & Mertz, J. E. (2012). Debunking myths about gender and mathematics performance. Notices of the AMS, 59(1), 10–21. doi:10.1090/noti790.

    Article  Google Scholar 

  • Kenney-Benson, G. A., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in math performance: the role of children’s approach to schoolwork. Developmental Psychology, 42(1), 11–26. doi:10.1037/0012-1649.42.1.11.

    Article  Google Scholar 

  • Kimura, D. (2000). Sex and cognition. Cambridge: MIT Press.

    Google Scholar 

  • Kimura, D. (2002). Sex hormones influence human cognitive pattern. Neuroendocrinology Letters, 23, 67–77.

    Google Scholar 

  • Kost-Smith, L. E., Pollock, S. J., Finkelstein, N. D., Cohen, G. L., Ito, T. A., Miyake, A., et al. (2012). Replicating a self-affirmation intervention to address gender differences: successes and challenges. In AIP Conference Proceedings-American Institute of Physics (Vol. 1413, pp. 231, Vol. 1).

  • Lauer, S., Momsen, J., Offerdahl, E., Kryjevskaia, M., Christensen, W., & Montplaisir, L. (2013). Stereotyped: investigating gender in introductory science courses. CBE-Life Sciences Education, 12(1), 30–38. doi:10.1187/cbe.12-08-0133.

    Article  Google Scholar 

  • Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls: relations to later self-concept and science achievement. Science Education, 97(4), 574–593. doi:10.1002/sce.21066.

    Article  Google Scholar 

  • Liben, L. S., & Coyle, E. F. (2014). Developmental interventions to address the STEM gender gap: exploring intended and unintended consequences. In L. S. Liben & R. S. Bigler (Eds.), The role of gender in educational contexts and outcomes (Vol. 47, pp. 77–115, advances in child development and behavior). San Diego: Academic Press.

    Google Scholar 

  • Linn, R. L. (2002). The measurement of student achievement in international studies. In A. C. Porter & A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational achievement (pp. 27–57). Washingon: National Academy Press.

    Google Scholar 

  • Lippa, R. A. (1998). Gender-related individual differences and the structure of vocational interests: the importance of the people–things dimension. Journal of Personality and Social Psychology, 74(4), 996–1009. doi:10.1037/0022-3514.74.4.996.

    Article  Google Scholar 

  • Luzzo, D. A., Hasper, P., Albert, K. A., Bibby, M. A., & Martinelli Jr., E. A. (1999). Effects of self-efficacy-enhancing interventions on the math/science self-efficacy and career interests, goals, and actions of career undecided college students. Journal of Counseling Psychology, 46(2), 233–243. doi:10.1037//0022-0167.46.2.233.

    Article  Google Scholar 

  • Lynch, J. (2002). Parents’ self-efficacy beliefs, parents’ gender, children’s reader self-perceptions, reading achievement and gender. Journal of Research in Reading, 25(1), 54–67. doi:10.1111/1467-9817.00158.

    Article  Google Scholar 

  • Lytton, H., & Romney, D. M. (1991). Parents’ differential socialization of boys and girls: a meta-analysis. Psychological Bulletin, 109(2), 267–296. doi:10.1037/0033-2909.109.2.267.

    Article  Google Scholar 

  • Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford: Stanford University Press.

    Google Scholar 

  • Machin, S., & Pekkarinen, T. (2008). Global sex differences in test score variability. Science, 322(5906), 1331–1332. doi:10.1126/science.1162573.

    Article  Google Scholar 

  • Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM country comparisons : international comparisons of science, technology, engineering and mathematics (STEM) education. Melbourne: Australian Council of Learned Academies.

    Google Scholar 

  • Martin, C. L., & Ruble, D. N. (2004). Children’s search for gender cues: cognitive perspectives on gender development. Current Directions in Psychological Science, 13(2), 67–70. doi:10.1111/j.0963-7214.2004.00276.x.

    Article  Google Scholar 

  • Martin, M. O., & Mullis, I. V. S. (2012). Methods and procedures in TIMSS and PIRLS 2011. Chestnut Hill: TIMSS & PIRLS International Study Center, Boston College.

    Google Scholar 

  • Miyake, A., Kost-Smith, L. E., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science, 330(6008), 1234–1237. doi:10.1126/science.1195996.

    Article  Google Scholar 

  • Mullis, I. V., Martin, M. O., & Gonzalez, E. J. (2000). TIMSS 1999: International Mathematics Report: Findings from IEA’s repeat of the Third International Mathematics and Science Study at the eighth grade: International Study Center.

  • National Science Foundation (2011). Women, minorities, and persons with disabilities in science and engineering: 2011. National Science Foundation, http://www.nsf.gov/statistics/wmpd/pdf/wmpd2011.pdf

  • National Science Foundation (2017). Women, minorities, and persons with disabilities in science and engineering: 2017. National Science Foundation. https://www.nsf.gov/statistics/2017/nsf17310/

  • Neuschmidt, O., Barth, J., & Hastedt, D. (2008). Trends in gender differences in mathematics and science (TIMSS 1995–2003). Studies in Educational Evaluation, 34(2), 56–72. doi:10.1016/j.stueduc.2008.04.002.

    Article  Google Scholar 

  • Newcombe, N. S., & Frick, A. (2010). Early education for spatial intelligence: why, what, and how. Mind, Brain, and Education, 4(3), 102–111. doi:10.1111/j.1751-228X.2010.01089.x.

    Article  Google Scholar 

  • Newcombe, N. S., Ambady, N., Eccles, J. S., Gomez, L., Klahr, D., Linn, M., et al. (2009). Psychology’s role in mathematics and science education. American Psychologist, 64(6), 538–550. doi:10.1037/a0014813.

    Article  Google Scholar 

  • Nguyen, H.-H. D., & Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. Journal of Applied Psychology, 93(6), 1314–1334. doi:10.1037/a0012702.

    Article  Google Scholar 

  • Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math= male, me= female, therefore math≠ me. Journal of Personality and Social Psychology, 83(1), 44–59. doi:10.1037//0022-3514.83.1.44.

    Article  Google Scholar 

  • Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106(26), 10593–10597. doi:10.1073/pnas.0809921106.

    Article  Google Scholar 

  • Nuttall, R. L., Casey, M. B., & Pezaris, E. (2005). Spatial ability as a mediator of gender differences on mathematics tests: a biological-environmental framework. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: an integrative psychological approach (pp. 121–142). Cambridge: Cambridge University Press.

    Google Scholar 

  • OECD (2011). Education at a Glance 2011: OECD Indicators. Organisation for Economic Co-Operation and Development. http://www.oecd-ilibrary.org/education/education-at-a-glance-2011_eag-2011-en

  • OECD (2014). Are boys and girls equally prepared for life? Organisation for Economic Co-Operation and Development. http://www.oecd.org/pisa/pisaproducts/PIF-2014-gender-international-version.pdf.

  • OECD (2016). PISA 2015 results—Excellence and Equity in Education. Paris: OECD Publishing.

  • Priess, H. A., & Hyde, J. S. (2010). Gender and academic abilities and preferences. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 297–316). New York: Springer.

    Chapter  Google Scholar 

  • Reilly, D. (2012). Gender, culture and sex-typed cognitive abilities. PloS One, 7(7), e39904. doi:10.1371/journal.pone.0039904.

    Article  Google Scholar 

  • Reilly, D., Neumann, D. L., & Andrews, G. (2015). Sex differences in mathematics and science: a meta-analysis of National Assessment of Educational Progress assessments. Journal of Educational Psychology, 107(3), 645–662. doi:10.1037/edu0000012.

    Article  Google Scholar 

  • Reilly, D., Neumann, D. L., & Andrews, G. (2017). Gender differences in spatial ability: implications for STEM education and approaches to reducing the gender gap for parents and educators. In M. S. Khine (Ed.), Visual-spatial ability: transforming research into practice (pp. 195–224). Switzerland: Springer International.

  • Riegle-Crumb, C., Farkas, G., & Muller, C. (2006). The role of gender and friendship in advanced course taking. Sociology of Education, 79(3), 206–228. doi:10.1177/003804070607900302.

    Article  Google Scholar 

  • Riegle-Crumb, C., Moore, C., & Ramos-Wada, A. (2011). Who wants to have a career in science or math? Exploring adolescents’ future aspirations by gender and race/ethnicity. Science Education, 95(3), 458–476. doi:10.1002/sce.20431.

    Article  Google Scholar 

  • Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52(1), 59–82. doi:10.1146/annurev.psych.52.1.59.

    Article  Google Scholar 

  • Rozek, C. S., Hyde, J. S., Svoboda, R. C., Hulleman, C. S., & Harackiewicz, J. M. (2014). Gender differences in the effects of a utility-value intervention to help parents motivate adolescents in mathematics and science. Journal of Educational Psychology, 107(1), 195–206. doi:10.1037/a0036981.

    Article  Google Scholar 

  • Sander, E., Endepohls-Ulpe, M., & Quaiser-Pohl, C. (2016). Adult education in science, technology, engineering and mathematics under the gender aspect—a critical overview of programs and strategies in Germany. In M. Maksimović, J. Ostrouch-Kamińska, K. Popović, & A. Bulajić (Eds.), Contemporary issues and perspectives on gender research in adult education (pp. 211–223). Belgrade: Institute for Pedagogy and Andragogy.

    Google Scholar 

  • Shapiro, J., & Williams, A. M. (2012). The role of stereotype threats in undermining girls’ and women’s performance and interest in STEM fields. Sex Roles, 66(3–4), 175–183. doi:10.1007/s11199-011-0051-0.

    Article  Google Scholar 

  • Shields, S. A. (1982). The variability hypothesis: the history of a biological model of sex differences in intelligence. Signs, 7(4), 769–797. doi:10.2307/3173639.

    Article  Google Scholar 

  • Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2005). Parents’ socializing behavior and children’s participation in math, science, and computer out-of-school activities. Applied Developmental Science, 9(1), 14–30. doi:10.1207/s1532480xads0901_3.

    Article  Google Scholar 

  • Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: a longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83. doi:10.1037/0012-1649.42.1.70.

    Article  Google Scholar 

  • Smeding, A. (2012). Women in science, technology, Engineering,and mathematics (STEM): an investigation of their implicit gender stereotypes and stereotypes’ connectedness to math performance. Sex Roles, 67(11–12), 617–629. doi:10.1007/s11199-012-0209-4.

    Article  Google Scholar 

  • Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: a critical review. American Psychologist, 60(9), 950–958. doi:10.1037/0003-066X.60.9.950.

    Article  Google Scholar 

  • Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28. doi:10.1006/jesp.1998.1373.

    Article  Google Scholar 

  • Steele, C. M. (1997). A threat in the air: how stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629. doi:10.1037/0003-066X.52.6.613.

    Article  Google Scholar 

  • Stoeger, H., Duan, X., Schirner, S., Greindl, T., & Ziegler, A. (2013). The effectiveness of a one-year online mentoring program for girls in STEM. Computers & Education, 69, 408–418. doi:10.1016/j.compedu.2013.07.032.

    Article  Google Scholar 

  • Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: a meta-analysis of sex differences in interests. Psychological Bulletin, 135(6), 859–884. doi:10.1037/a0017364.

    Article  Google Scholar 

  • Sugimoto, C., Larivière, V., Ni, C., Gingras, Y., & Cronin, B. (2013). Global gender disparities in science. Nature, 504(7479), 211–213. doi:10.1038/504211a.

    Article  Google Scholar 

  • Thompson, S. G., & Higgins, J. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine, 21(11), 1559–1573. doi:10.1002/sim.1187.

    Article  Google Scholar 

  • UNESCO (2011). Fact Sheet: Women in Science (2011). UNESCO Institute for Statistics. http://www.uis.unesco.org/ScienceTechnology/Documents/fs14-women-science-2011-en.pdf

  • Unger, R. K. (1979). Towards a redefinition of sex and gender. American Psychologist, 34(11), 1085–1094. doi:10.1037/0003-066X.34.11.1085.

    Article  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2013a). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi:10.1037/a0028446.

    Article  Google Scholar 

  • Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013b). Exploring and enhancing spatial thinking links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. doi:10.1177/0963721413484756.

    Article  Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. doi:10.1037//0033-2909.117.2.250.

    Article  Google Scholar 

  • Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: a 30 year examination. Intelligence, 38(4), 412–423. doi:10.1016/j.intell.2010.04.006.

    Article  Google Scholar 

  • Walters, J. (2010). Recasting title IX: addressing gender equity in the science, technology, engineering, and mathematics professoriate. Review of Policy Research, 27(3), 317–332. doi:10.1111/j.1541-1338.2010.00444.x.

    Article  Google Scholar 

  • Weinburgh, M. (1995). Gender differences in student attitudes toward science: a meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32(4), 387–398. doi:10.1002/tea.3660320407.

    Article  Google Scholar 

  • Wilkinson, L. (1999). Statistical methods in psychology journals: guidelines and explanations. American Psychologist, 54(8), 594–604. doi:10.1037/0003-066X.54.8.594.

    Article  Google Scholar 

  • Wood, W., & Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men: implications for the origins of sex differences. Psychological Bulletin, 128(5), 699–727. doi:10.1037//0033-2909.128.5.699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reilly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reilly, D., Neumann, D.L. & Andrews, G. Investigating Gender Differences in Mathematics and Science: Results from the 2011 Trends in Mathematics and Science Survey. Res Sci Educ 49, 25–50 (2019). https://doi.org/10.1007/s11165-017-9630-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-017-9630-6

Keywords

Navigation