Skip to main content

Advertisement

Log in

Development and Validation of Measures of Secondary Science Teachers’ PCK for Teaching Photosynthesis

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

This paper describes procedures by which two types of measures of Pedagogical Content Knowledge (PCK) were developed and validated: (a) PCK Survey and (b) PCK Rubric. Given the topic-specificity of PCK, the measures centered on photosynthesis as taught in high school classrooms. The measures were conceptually grounded in the pentagon model of PCK and designed to measure indispensable PCK that can be applied to any teacher, in any teaching context, for the given topic. Because of the exploratory nature of the study, the measures focus on two key components of PCK: (a) knowledge of students’ understanding in science and (b) knowledge of instructional strategies and representations. Both measures have established acceptable levels of reliability as determined by internal consistency and inter-rater agreement. Evidence related to content validity was gathered through expert consultations, while evidence related to construct validity was collected through analysis of think-aloud interviews and factor analyses. Issues and challenges emerging from the course of the measure development, administration, and validation are discussed with strategies for confronting them. Directions for future research are proposed in three areas: (a) relationships between PCK and teaching experiences, (b) differences in PCK between science teachers and scientists, and (c) relationships between PCK and student learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abell, S. K. (2007). Research on science teacher knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah: Lawrence Earlbaum Associates.

    Google Scholar 

  • Abell, S. K. (2008). Twenty years later: does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405–1416. doi:10.1080/09500690802187041.

    Article  Google Scholar 

  • Academies, U. S. (2006). Rising above the gathering storm: energizing and employing America for a brighter economic future.

  • American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Longman.

    Google Scholar 

  • Ball, D. L., & Hill, H. C. (2009). Measuring teacher quality in practice. In D. H. Gitomer (Ed.), Measurement issues and assessment for teaching quality (pp. 80–98). Los Angeles: Sage.

    Chapter  Google Scholar 

  • Barnett, J., & Hodson, D. (2000). Pedagogical context knowledge: toward a fuller understanding of what good science teachers know. Science Education, 85, 426–453. doi:10.1002/sce.1017.

    Article  Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., & Tsai, Y. M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. doi:10.3102/0002831209345157.

    Article  Google Scholar 

  • Baxter, J. A., & Lederman, N. G. (1999). Assessment and measurement of pedagogical content knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 147–161). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Blumer, H. (1969). The methodological position of symbolic interactionism. Symbolic interactionism: perspective and method, 1–60.

  • Borko, H., & Putnam, R. T. (1996). Learning to teach. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 673–708). New York: Macmillan.

    Google Scholar 

  • Brennan, R. L. (1992). Generalizability theory. Educational Measurement: Issues and Practice, 11(4), 27–34.

    Article  Google Scholar 

  • Bullough, R. V., Jr. (2001). Pedagogical content knowledge circa 1907 and 1987: a study in the history of an idea. Teaching and Teacher Education, 17(6), 655–666. doi:10.1016/S0742-051X(01)00022-1.

    Article  Google Scholar 

  • Calderhead, J. (1996). Teachers: beliefs and knowledge. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 709–725). New York: Macmillan.

    Google Scholar 

  • Carifio, J., & Perla, R. J. (2007). Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. Journal of Social Sciences, 3(3), 106–116.

    Article  Google Scholar 

  • Carter, K. (1990). Teachers’ knowledge and learning to teach. In W. R. Houston (Ed.), Handbook of research on teacher education (pp. 291–310). New York: Macmillan.

    Google Scholar 

  • Cattell, R. B. (1956). Validation and intensification of the sixteen personality factor questionnaire. Journal of Clinical Psychology, 12(3), 205–214.

  • Church, A. H. (1993). Estimating the effect of incentives on mail survey response rates: a meta-analysis. Public Opinion Quarterly, 57(1), 62–79.

    Article  Google Scholar 

  • Clermont, C. P., Borko, H., & Krajcik, J. S. (1994). Comparative study of the pedagogical content knowledge of experienced and novice chemical demonstrators. Journal of Research in Science Teaching, 31, 419–441. doi:10.1002/tea.3660310409.

    Article  Google Scholar 

  • Cochran, K. F. (1992). Pedagogical content knowledge: teachers’ transformations of subject matter. Research matters… to the science teacher. National Association for Research in Science Education (NARST), Monograph, (5).

  • Cochran, K. F., Deruiter, J. A., & King, R. A. (1993). Pedagogical content knowing: an integrative model for teacher preparation. Journal of Teacher Education, 44(1), 263–272.

    Article  Google Scholar 

  • Davis, E. A. (2004). Knowledge integration in science teaching: analysing teachers’ knowledge development. Research in Science Education, 34(1), 21–53. doi:10.1023/B:RISE.0000021034.01508.b8.

    Article  Google Scholar 

  • De Jong, O., Van Driel, J. H., & Verloop, N. (2005). Preservice teachers’ pedagogical content knowledge of using particle models in teaching chemistry. Journal of Research in Science Teaching, 42, 947–964.

    Article  Google Scholar 

  • Dykema, J., Stevenson, J., Klein, L., Kim, Y., & Day, B. (2013). Effects of e-mailed versus mailed invitations and incentives on response rates, data quality, and costs in a web survey of university faculty. Social Science Computer Review, 31(3), 359–370.

    Article  Google Scholar 

  • Edwards, P., Roberts, I., Clarke, M., DiGuiseppi, C., Pratap, S., Wentz, R., & Kwan, I. (2002). Increasing response rates to postal questionnaires: systematic review. British Medical Journal, 324, 1183.

    Article  Google Scholar 

  • Ekici, F., Ekici, E., & Aydin, F. (2007). Utility of concept cartoons in diagnosing and overcoming misconceptions related to photosynthesis. International Journal of Environmental and Science Education, 2(4), 111–124.

    Google Scholar 

  • Falk, A. (2012). Teachers learning from professional development in elementary science: reciprocal relations between formative assessment and pedagogical content knowledge. Science Education, 96(2), 265–290. doi:10.1002/sce.20473.

    Article  Google Scholar 

  • Friedrichsen, P., Van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95, 358–376. doi:10.1002/sce.20428.

    Article  Google Scholar 

  • Gess-Newsome, J. (1999). Pedagogical content knowledge: an introduction and orientation. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 3–20). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: results of the thinking from the PCK Summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). London: Routledge Press.

    Google Scholar 

  • Gess-Newsome, J., & Carlson, J. (2013). An international perspective on pedagogical content knowledge. Paper presented at the annual conference of the Association for Science Teacher Education, Charleston, SC.

  • Gitomer, D. H. (Ed.). (2009). Measurement issues and assessment for teaching quality. SAGE.

  • Goldberg, A., Russell, M., & Cook, A. (2003). The effect of computers on student writing: a meta-analysis of studies from 1992 to 2002. The Journal of Technology, Learning and Assessment, 2(1).

  • Green, P. E. (1978). Analyzing multivariate data (p. 38). Hinsdale: Dryden Press.

    Google Scholar 

  • Grossman, P. L. (1990). The making of a teacher: teacher knowledge and teacher education. New York: Teachers College Press.

    Google Scholar 

  • Hand, B. (Ed.). (2008). Science inquiry, argument and language. Rotterdam: Sense Publishers.

    Google Scholar 

  • Hashweh, M. Z. (2005). Teacher pedagogical constructions: a reconfiguration of pedagogical content knowledge. Teachers and Teaching, 11(3), 273–292. doi:10.1080/13450600500105502.

    Article  Google Scholar 

  • Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument. Journal of Biological Education, 21(3), 203–211.

    Article  Google Scholar 

  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406. doi:10.3102/00028312042002371.

    Article  Google Scholar 

  • Howitt, C. (2007). Pre-service elementary teachers’ perceptions of factors in a holistic methods course influencing their confidence in teaching science. Research in Science Education, 37(1), 41–58. doi:10.1007/s11165-006-9015-8.

    Article  Google Scholar 

  • Jüttner, M., & Neuhaus, B. J. (2012). Development of items for a pedagogical content knowledge test based on empirical analysis of pupils’ errors. International Journal of Science Education, 34(7), 1125–1143.

    Article  Google Scholar 

  • Kaya, O. N. (2009). The nature of relationships among the components of pedagogical content knowledge of preservice science teachers: ‘ozone layer depletion’ as an example. International Journal of Science Education, 31(7), 961–988. doi:10.1080/09500690801911326.

    Article  Google Scholar 

  • Knapp, T. R. (1990). Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nursing Research, 39, 121–123.

    Article  Google Scholar 

  • Kongsved, S. M., Basnov, M., Holm-Christensen, K., & Hjollund, N. H. (2007). Response rate and completeness of questionnaires: a randomized study of Internet versus paper-and-pencil versions. Journal of medical Internet research, 9(3). doi: 10.2196/jmir.9.3.e25.

  • Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716. doi:10.1037/0022-0663.100.3.716.

    Article  Google Scholar 

  • Lawrence, I. M., & Dorans, N. J. (1987). An assessment of the dimensionality of SAT Mathematical. Paper presented at the annual meeting of the National Council on Measurement in Education, Washington, DC.

  • Lederman, N. G., & Gess-Newsome, J. (1992). Do subject matter knowledge, pedagogical knowledge, and pedagogical content knowledge constitute the ideal gas law of science teaching? Journal of Science Teacher Education, 3(1), 16–20.

    Article  Google Scholar 

  • Lee, H. S., Liu, O. L., & Linn, M. C. (2011). Validating measurement of knowledge integration in science using multiple-choice and explanation items. Applied Measurement in Education, 24(2), 115–136. doi:10.1080/08957347.2011.554604.

    Article  Google Scholar 

  • Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370–391. doi:10.1002/tea.20007.

    Article  Google Scholar 

  • Loughran, J. J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers’ pedagogical content knowledge. Rotterdam: Sense Publishers.

    Google Scholar 

  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84.

    Article  Google Scholar 

  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Netherlands: Springer.

    Google Scholar 

  • Marsh, H. W. (1994). Confirmatory factor analysis models of factorial invariance: a multifaceted approach. Structural Equation Modeling, 1, 5–34.

    Article  Google Scholar 

  • Métioui, A., Matoussi, F., & Trudel, L. (2015). The teaching of photosynthesis in secondary school: a history of the science approach. Journal of Biological Education, 1–15.

  • Mintzes, J. J., & Wandersee, J. H. (2005). Research in science teaching and learning: a human constructivist view. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Teaching science for understanding: a human constructivist view (pp. 59–92). San Diego: Academic.

    Chapter  Google Scholar 

  • National Academy of Sciences (2014). STEM integration in K-12 education: status, prospects, and an agenda for research. National Academies Press.

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K–12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

    Google Scholar 

  • National Science Board (2010). Science and engineering indicators 2010, appendix tables. Arlington, VA, USA: National Science Foundation (National Science Board 10-01).

  • National Science Board (NSB). (2007). A National action plan for addressing the critical needs of the U.S. science, technology, engineering, and mathematics education system. Arlington: National Science Foundation.

    Google Scholar 

  • Nelson, M. M., & Davis, E. A. (2012). Preservice elementary teachers’ evaluations of elementary students’ scientific models: an aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34(12), 1931–1959. doi:10.1080/09500693.2011.594103.

    Article  Google Scholar 

  • Nilsson, P. (2008). Teaching for understanding: the complex nature of pedagogical content knowledge in pre‐service education. International Journal of Science Education, 30(10), 1281–1299. doi:10.1080/09500690802186993.

    Article  Google Scholar 

  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.

  • Park, S., & Chen, Y-C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK) for teaching photosynthesis and heredity. Journal of Research in Science Teaching, 49(7), 922–941.

  • Park, S., & Suh, J. (2015). Trajectory from portraying toward assessing PCK: Drives, dilemmas, and directions for future research. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 104–119). London: Routledge Press.

  • Park, S., Jang, J., Chen, Y-C., & Jung, J. (2011). Is pedagogical content knowledge (PCK) necessary for reformed science teaching?: Evidence from an empirical study. Research in Science Education, 41, 245–260.

  • Paulhus, D. L., & Vazire, S. (2007). The self-report method. Handbook of research methods in personality psychology, 224–239.

  • Pianta, R. C., & Hamre, B. K. (2009). Conceptualization, measurement, and improvement of classroom processes: standardized observation can leverage capacity. Educational Researcher, 38(2), 109–119. doi:10.3102/0013189X09332374.

    Article  Google Scholar 

  • Rodriguez, M. C. (2005). Three options are optimal for multiple‐choice items: a meta‐analysis of 80 years of research. Educational Measurement: Issues and Practice, 24(2), 3–13. doi:10.1111/j.1745-3992.2005.00006.x.

    Article  Google Scholar 

  • Ross, P. A., Tronson, D., & Ritchie, R. A. J. (2005). Modelling photosynthesis to increase conceptual understanding. Journal of Biological Education, 40(2), 84–88.

    Article  Google Scholar 

  • Roth, K. J. (1990). Developing meaningful conceptual understanding in science. In B. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (pp. 139–175). Hillsdale: Erlbaum.

    Google Scholar 

  • Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. Z. (2011). Videobased lesson analysis: effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48(2), 117–148. doi:10.1002/tea.20408.

    Article  Google Scholar 

  • Rowan, B., Schilling, S. G., Ball, D. L., Miller, R., Atkins-Burnett, S., & Camburn, E. (2001). Measuring teachers’ pedagogical content knowledge in surveys: an exploratory study. Ann Arbor: Consortium for Policy Research in Education, University of Pennsylvania.

  • Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L. (2013). The influence of teachers’ knowledge on student learning in middle school physical science classrooms. American Educational Research Journal, 50(5), 1020–1049.

    Article  Google Scholar 

  • Sanders, W. L. (2000). Value-added assessment from student achievement data: opportunities and hurdles CREATE NATIONAL EVALUATION INSTITUTE July 21, 2000. Journal of Personnel Evaluation in Education, 14(4), 329–339. doi:10.1023/A:1013008006096.

    Article  Google Scholar 

  • Schon, D. A. (1983). The reflective practitioner. New York: Basic Books.

    Google Scholar 

  • Schon, D. A. (1987). Educating the reflective practitioner: toward a new design for teaching and learning in the professions. San Francisco: Jossey-Bass.

    Google Scholar 

  • Sellmann, D., Liefländer, A. K., & Bogner, F. X. (2015). Concept maps in the classroom: a new approach to reveal students’ conceptual change. The Journal of Educational Research, 108(3), 250–257.

    Article  Google Scholar 

  • Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(1), 4–14.

    Article  Google Scholar 

  • Shulman, L. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57(1), 1–22.

    Article  Google Scholar 

  • Shulman, L. (2015). PCK: Its genesis and exodus. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 3–13). London: Routledge Press.

    Google Scholar 

  • Singer, E., & Ye, C. (2013). The use and effects of incentives in surveys. The Annals of the American Academy of Political and Social Science, 645(1), 112–141.

    Article  Google Scholar 

  • Smith, P. S., & Banilower, E. R. (2015). Assessing PCK: a new application of the uncertainty principle. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 88–103). London: Routledge Press.

    Google Scholar 

  • Stavy, R., Eisen, Y., & Yaakobi, D. (1987). How students aged 13‐15 understand photosynthesis. International Journal of Science Education, 9(1), 105–115.

    Article  Google Scholar 

  • Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems, 13(1), 63.

    Google Scholar 

  • Tamir, P. (1988). Subject matter and related pedagogical knowledge in teacher education. Teaching and Teacher Education, 4(2), 99–110. doi:10.1016/0742-051X(88)90011-X.

    Article  Google Scholar 

  • Thompson, B., & Melancon, J. G. (1996). Using item ‘testlets’/‘parcels’ in confirmatory factor analysis: an example using the PPSDQ-78. Paper presented at the annual meeting of the Mid-South Educational Research Association, Tuscaloosa, AL.

  • Thorn, C. J., Bissinger, K., Thorn, S., & Bogner, F. X. (2016). “Trees live on soil and sunshine!”-coexistence of scientific and alternative conception of tree assimilation. PloS One, 11(1), e0147802.

    Article  Google Scholar 

  • Van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.

    Article  Google Scholar 

  • Van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education: the role of teachers’ practical knowledge. Journal of Research in Science Teaching, 38(2), 137–158.

    Article  Google Scholar 

  • Varma, S. (2006). Preliminary item statistics using point-biserial correlation and p-values. Morgan Hill: Educational Data Systems Inc.

    Google Scholar 

  • Weigle, S. C. (2002). Assessing writing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonhye Park.

Appendix

Appendix

Table 5 Coding scheme for think-aloud interviews
Table 6 Scoring rubric for open-ended questions of the PCK survey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Suh, J. & Seo, K. Development and Validation of Measures of Secondary Science Teachers’ PCK for Teaching Photosynthesis. Res Sci Educ 48, 549–573 (2018). https://doi.org/10.1007/s11165-016-9578-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9578-y

Keywords

Navigation