Skip to main content
Log in

When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Adding pictures to a text is very common in today’s education and might be especially beneficial for elementary school children, whose abilities to read and understand pure text have not yet been fully developed. Our study examined whether adding pictures supports learning of a biology text in fourth grade and whether the text modality (spoken or written) plays a role. Results indicate that overall, pictures enhanced learning but that the text should be spoken rather than written. These results are in line with instructional design principles derived from common multimedia learning theories. In addition, for elementary school children, it might be advisable to read texts out to the children. Reading by themselves and looking at pictures might overload children’s cognitive capacities and especially their visual channel. In this case, text and pictures would not be integrated into one coherent mental model, and effective learning would not take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth, S. (2010). Improving learning by drawing. Paper presented at the 9th International Conference of the Learning Sciences (ICLS). Chicago, USA.

  • Ainsworth, S. E., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.

    Article  Google Scholar 

  • Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097.

    Article  Google Scholar 

  • Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman.

    Google Scholar 

  • Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209.

    Article  Google Scholar 

  • Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students’ learning with hypermedia? Journal of Educational Psychology, 96(3), 523–535.

    Article  Google Scholar 

  • Baddeley, A. D. (1999). Human memory. Boston: Allyn & Bacon.

    Google Scholar 

  • Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning and Instruction, 3, 1–21.

    Article  Google Scholar 

  • Brookshire, J., Scharff, L. F. V., & Moses, L. E. (2002). The influence of illustrations on children’s book preferences and comprehension. Reading Psychology, 23, 323–339.

    Article  Google Scholar 

  • Brünken, R., & Leutner, D. (2001). Aufmerksamkeitsverteilung oder Aufmerksamkeits-fokussierung? Empirische Ergebnisse zur „Split-Attention-Hypothese“beim Lernen mit Multimedia [Splitting or focussing attention. Empirical results for a “split-attention hypothesis” of multimedia learning]. Unterrichtswissenschaft, 29, 357–366.

    Google Scholar 

  • Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: auditory load and modality effects. Instructional Science, 32, 115–132.

    Article  Google Scholar 

  • Bryant, J., Brown, D., Silberberg, A. R., & Elliot, S. M. (1981). Effects of humorous illustrations in college textbooks. Human Communication Research, 8, 43–57.

    Article  Google Scholar 

  • Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, 5–26.

    Article  Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.

    Article  Google Scholar 

  • Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62, 233–246.

    Article  Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Chi, M. T. H., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.

    Google Scholar 

  • Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Elsevier.

    Google Scholar 

  • Cook, M. (2006). Visual representations in science education: the influence of prior knowledge and cognitive load on instructional design principles. Science Education, 90(6), 1079–1091.

    Article  Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 21(6), 731–746.

    Article  Google Scholar 

  • De Westelinck, K., Valcke, M., De Craene, B., & Kirschner, P. (2005). The cognitive theory of multimedia learning in the social sciences knowledge domain: limitations of external graphical representations. Computers in Human Behavior, 21, 555–573.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  Google Scholar 

  • Feger, B. (1984). Die Generierung von Testitems zu Lehrtexten [The generation of test items for educational texts]. Diagnostica, 30, 24–46.

    Google Scholar 

  • Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). Cambridge: Cambridge University.

    Chapter  Google Scholar 

  • Freisinger, S. D. (1976). The effect of cartoon-embellished programmed textual instruction on students’ learning and affective learning. Paper presented at the annual meeting of the Association for Educational Communications and Technology, Anaheim, California. (ERIC Document Reproduction Service No. ED 128 008).

  • Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 3–24). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.

    Article  Google Scholar 

  • Goldstein, R., & Underwood, G. (1981). The influence of pictures on the derivation of meaning from children’s reading materials. Journal of Research in Reading, 4, 6–16.

    Article  Google Scholar 

  • Green, J. G., Moos, D. C., Azevedo, R. A., & Winters, F. I. (2008). Exploring differences between gifted and grade-level students’ use of self-regulatory learning processes with hypermedia. Computers in Education, 50, 1069–1083.

    Article  Google Scholar 

  • Harskamp, E. G., Mayer, R. E., & Suhre, C. (2007). Does the modality principle for multimedia learning apply to science classrooms? Learning and Instruction, 17, 465–477.

    Article  Google Scholar 

  • Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen Revision (KFT 4-12 + R) [Cognitive abilities test for grades 4 to 12, revised version]. Göttingen: Hogrefe.

    Google Scholar 

  • Höffler, T., Schmeck, A., & Opfermann, M. (2013). Static and dynamic visual representations: individual differences in processing. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays: current perspectives on cognition, learning, and instruction (pp. 133–163). Charlotte: Information Age.

    Google Scholar 

  • Jaccard, J. (2006). Zumastat 4.0. [Computer software]. Miami: Applied Scientific Analysis.

  • Keller, R. W. (2005). Real science-4-kids. Biology level I. Rio Rancho: Gravitas.

    Google Scholar 

  • Keller, R. W. (2011). Real science-4-kids. Chemistry level I. Rio Rancho, NM: Gravitas.

    Google Scholar 

  • Klauer, K. J. (1985). Framework for a theory of teaching. Teaching and Teacher Education, 1(1), 5–17.

    Article  Google Scholar 

  • Klauer, K. J. (1987). Kriteriumorientierte Tests. Lehrbuch der Theorie und Praxis lehrzielorientierten Messens. [Criterion-referenced tests. Textbook for theory and praxis of educational objectives’ measurement]. Göttingen: Hogrefe.

  • Kozma, R. (2003). Innovative practices from around the world: integrating technology into the classroom. Leading and Learning, 21, 52–54.

    Google Scholar 

  • Lenhard, W., & Schneider, W. (2006). ELFE 1–6: Ein Leseverständnistest für Erst- bis Sechstklässler [ELFE 1–6: a reading comprehension test for grade 1 to 6]. Göttingen: Hogrefe.

    Google Scholar 

  • Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: effects of drawing and imagining text content. Computers in Human Behavior, 25, 284–289.

    Article  Google Scholar 

  • Levie, W. H., & Lentz, R. (1982). Effects of text illustrations—a review of research. Educational Communication and Technology Journal, 30, 195–232.

    Google Scholar 

  • Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 51–85). New York: Springer.

    Chapter  Google Scholar 

  • Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650–658.

    Article  Google Scholar 

  • Lipsey, M. W. (1990). Design sensitivity. Statistical power for experimental design. Newbury Park: Sage.

    Google Scholar 

  • Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge: Cambridge University.

    Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge: Cambridge University.

    Book  Google Scholar 

  • Mayer, R. (2010). Unique contribution of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167–171.

    Article  Google Scholar 

  • Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (2nd ed., pp. 279–315). New York: Cambridge University.

    Chapter  Google Scholar 

  • Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312–320.

    Article  Google Scholar 

  • Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319–334.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representation: a dual coding approach. New York: Oxford University.

    Google Scholar 

  • Peeck, J. (1974). Retention of pictorial and verbal content of a text with illustrations. Journal of Educational Psychology, 66, 880–888.

    Article  Google Scholar 

  • Peeck, J. (1987). The role of illustrations in processing and remembering illustrated text. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 115–151). New York: Springer.

    Chapter  Google Scholar 

  • Peeck, J. (1994). Wissenserwerb mit darstellenden Bildern. [Knowledge acquisition with representational illustrations]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern. Instruktionale Bilder in Printmedien, Film/Video und Computerprogrammen (pp. 59–94). Bern: Huber.

    Google Scholar 

  • Pelaez, N. J., Boyd, D. D., Rojas, J. B., & Hoover, M. A. (2005). Prevalence of blood circulation misconceptions among prospective elementary teachers. Advances in Physiology Education, 29, 172–181.

    Article  Google Scholar 

  • Rey, G. D. (2012). How seductive are decorative elements in learning material? Journal of Educational Multimedia and Hypermedia, 21, 257–283.

    Google Scholar 

  • Schmeck, A., Mayer, R., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39, 275–286.

    Article  Google Scholar 

  • Schmeck, A., Opfermann, M., Van Gog, T., Paas, F., & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: differences between immediate and delayed ratings. Instructional Science, 43(1), 93–114.

    Article  Google Scholar 

  • Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110.

    Article  Google Scholar 

  • Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14, 101–120.

    Article  Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University.

    Chapter  Google Scholar 

  • Schnotz, W., Bannert, M., & Seufert, T. (2002). Towards an integrative view of text and picture comprehension: visualization effects on the construction of mental models. In J. Otero, A. Graesser, & J. A. Leon (Eds.), The psychology of science text comprehension (pp. 385–416). Mahwah: Erlbaum.

    Google Scholar 

  • Segers, E., Verhoeven, L., & Hulstijn-Hendrikse, N. (2008). Cognitive processes in children’s multimedia text learning. Applied Cognitive Psychology, 22, 375–387.

    Article  Google Scholar 

  • Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). Cambridge: Cambridge University.

    Chapter  Google Scholar 

  • Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load and selective attention as factors in the structuring of technical material. Journal of Experimental Psychology: General, 119, 176–192.

    Article  Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  • Sweller, J., van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

  • Tabbers, H. K., Martens, R. L., & van Merriënboer, J. J. G. (2004). Multimedia instructions and cognitive load theory: effects of modality and cueing. British Journal of Educational Psychology, 74, 71–81.

    Article  Google Scholar 

  • Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 257–287.

    Google Scholar 

  • Treagust, D. F., & Tsui, D. (2013). Multiple representations in biological education. Dordrecht, The Netherlands: Springer.

    Book  Google Scholar 

  • Van Meter, P., & Firetto, C. M. (2013). Cognitive model of drawing construction: learning through the construction of drawings. In G. J. Schraw, M. T. McCrudden, & D. R. Robinson (Eds.), Learning through visual displays (pp. 247–380). Charlotte: Information Age.

    Google Scholar 

  • Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325.

    Article  Google Scholar 

  • Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142–166.

    Article  Google Scholar 

  • Vavra, K. L., Janjic-Watrich, V., Loerke, K., Phillips, L. M., Norris, S. P., & Macnab, J. (2011). Visualization in science education. Alberta Science Education Journal, 41, 22–30.

    Google Scholar 

  • Weidenmann, B. (1993). Informierende Bilder. [Informational pictures.]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern [Knowledge acquisition with pictures.] (pp. 9–58). Bern: Hans Huber.

  • Yeung, A. S., Jin, P., & Sweller, J. (1997). Cognitive load and learner expertise: split-attention and redundancy effects in reading with explanatory notes. Contemporary Educational Psychology, 23, 1–21.

    Article  Google Scholar 

Download references

Acknowledgments

This paper was part of a project funded by the German Research foundation (DFG), grant no. LE 645/9-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim N. Höffler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrlinger, S., Höffler, T.N., Opfermann, M. et al. When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools. Res Sci Educ 47, 685–704 (2017). https://doi.org/10.1007/s11165-016-9525-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9525-y

Keywords

Navigation