Skip to main content
Log in

Phosphorus-doped Y zeolites for increasing mesopore and Lewis acid in high-efficiency denitrogenation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Micro-mesoporous zeolite shows great potential in the field of fuel denitrogenation. However, the current preparation method of zeolite with composite pores still has the problems of high cost and low denitrification rate. Herein, we prepared a low-cost phosphorus doped zeolite by directly impregnated Y zeolite in phosphoric acid and calcinated at 400 °C firstly. Experimental results showed that phosphorus doped 10 wt.% PA/MY provided optimum denitrogenation performance with denitrogenation rate as high as 97% compared to unmodified MY zeolite (21.11%) and ion exchanged 1.0 MHY zeolite (91.38%). What's more, it was found that the introduction of phosphorus led to the formation of P–O tetrahedra and Al–O–P bonds in zeolite, which increased the amount of mesopore and the Lewis acid in zeolite. Meanwhile, the comparative study found that ion exchanged MHY zeolite depended on the limited pore matching effect of micropores and nitrogen-containing molecules and the chemisorption reaction of non-regenerable Brøsted acid to achieve denitrogenation performance. However, phosphorus doped zeolite PA/MY not only had a better size matching effect between the mesopore and the size of nitrogen-containing molecules, but also had more Lewis acid to play a major role in denitrogenation. The Lewis acid on PA/MY zeolite also had the advantage of being easy to regenerate by desorption of the nitrogen-containing molecules absorbed. This study showed good prospects for the industrial application of the doped zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available within the article and its supplementary material.

References

  1. J. Dickson, N.A. Conroy, Y. Xie, Chem. Eng. J. 402, 126268 (2020)

    Article  CAS  Google Scholar 

  2. Y. Pukcothanung, T. Siritanon, K. Rangsriwatananon, Microporous Mesoporous Mater. 258, 131 (2018)

    Article  CAS  Google Scholar 

  3. V. Blay, B. Louis, R. Miravalles, T. Yokoi, K.A. Peccatiello, M. Clough, B. Yilmaz, Acs Catal. 10, 6542 (2017)

    Article  Google Scholar 

  4. S.M. Kanan, M.A. Moyet, Res. Chem. Intermed. 47, 433–445 (2021)

    Article  CAS  Google Scholar 

  5. F. Tian, Q.C. Shen, Z.K. Fu, Y.H. Wu, C.Y. Jia, Fuel Process. Technol. 128, 176 (2014)

    Article  CAS  Google Scholar 

  6. X.S. Lu, Y.X. Peng, H. Chen, J. Dai, Ni. Bai, J. Wang, Chem. Pap. (2023)

  7. S. Abelló, A. Bonilla, J. Pérez-Ramírez, Appl Catal A- Gen. 364, 191 (2009)

    Article  Google Scholar 

  8. I.I. Ivanova, I.A. Kasyanov, A.A. Maerle, Microporous Mesoporous Mater. 189, 163 (2014)

    Article  CAS  Google Scholar 

  9. J.C. Groen, L.A. Peffer, J. Pérez-Ramírez Microporous Mesoporous Mater. 60, 1 (2003)

    Article  CAS  Google Scholar 

  10. X. Jia, W. Khan, Z. Wu, J. Choi, Adv. Powder Technol. 30, 467 (2019)

    Article  CAS  Google Scholar 

  11. F. Wang, H. Li, H. Zhao, Catal. Ind. 20, 34 (2012)

    CAS  Google Scholar 

  12. X. Hong, K. Tang, Pet. Sci. Technol. 33, 15 (2015)

    Article  Google Scholar 

  13. X. Hong, K. Tang, Energy Source Part A. 38, 2560 (2016)

    Article  Google Scholar 

  14. X. Fan, B. Zhang, Z. Su, M. Wang, F. Li, Chem. Phys. 558, 111512 (2022)

    Article  CAS  Google Scholar 

  15. P. Lv, Y. Lan, Y. Liu, J. Energy Inst. 93, 4 (2020)

    Google Scholar 

  16. F. Xu, M. Zhang, Z.H. Li, C.D. Guan, L.J. Zhu, D.H. Xia, J. Porous Mater. 29, 5 (2022)

    Article  Google Scholar 

  17. W.Q. Fu, L. Zhang, T. Tang, Q.P. Ke, S. Wang, J.B. Hu, G.Y. Fang, J.X. Li, F.S. Xiao, J. Am. Chem. Soc. 133, 15346 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Z.H. Huang, N.W. Liu, J.J. Yao, P. Xin, L. Shi, Huagong Jinzhan 35, 138 (2016)

    CAS  Google Scholar 

  19. X. Colom, F. Carrillo, J. Wood. Chem. Technol. 25, 1 (2005)

    Article  CAS  Google Scholar 

  20. K.K. Pandey, J. Appl. Polym. Sci. 71, 1969 (1999)

    Article  CAS  Google Scholar 

  21. S.F. Alam, M.Z. Kim, A.U. Rehman, A. Devipriysnks, S. Pankaj, H.C. Churl, Nanomaterials 11, 3198 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y.C. Fan, X.P. Zhen, C.G. Niu, L.J. Song, J. Fuel Chem. Technol. 45, 1467 (2017)

    Google Scholar 

  23. Y.J. Lee, Y.W. Kim, N. Viswanadham, K.W. Jun, J.W. Bae, Appl Catal. A-Gen. 374, 18 (2010)

    Article  CAS  Google Scholar 

  24. R. Prajapati, D. Jadav, M. Pandey, K. Nishimura, S. Inagak, Eur. J. Inorg. Chem. 18, (2022)

  25. L.F. Chen, X.L. Zhou, L.E. Norena, J.A. Wang, J. Navarrete, P. Salas, A. Montoya, P. Del Angel, M.E. Llanos, Appl. Surf. Sci. 253, 2443 (2006)

    Article  CAS  Google Scholar 

  26. Y.L. Gu, S.Z. Liu, C.Y. Li, Q.K. Cui, J. Catal. 301, 93 (2013)

    Article  CAS  Google Scholar 

  27. W.X. Zhu, C. Tang, D.N. Liu, J.L. Wang, A.M. Asiri, X.P. Sun, J. Mater. Chem. A. 4, 7169 (2016)

    Article  CAS  Google Scholar 

  28. K. Damodaran, J.W. Wiench, S.M. Cabral, Y.L. Lam, J. Trebosc, J.P. Amoureux, Microporous Mesoporous Mater. 95, 296 (2006)

    Article  CAS  Google Scholar 

  29. J.C. Soh, S.L. Chong, S.S. Hossain, C.K. Cheng, Fuel Process. Technol. 158, 85 (2017)

    Article  CAS  Google Scholar 

  30. K.S.W. Sing, Pure Appl. Chem. 57, 1217 (1985)

    Article  Google Scholar 

  31. F. Li, Z. Liu, M. Zhang, Huagong Jinzhan 32, 31 (2015)

    Google Scholar 

  32. M. Sharma, B. Das, A. Hazarika, N.S.V.M. Rao Mangina, Microporous Mesoporous Mater. 272, 31 (2018)

    Article  CAS  Google Scholar 

  33. M.M.J. Treacy, J.B. Higgins, Zeolites 10, 26 (2001)

    Google Scholar 

Download references

Funding

This work was partially supported by the postgraduate innovation project of China University of Petroleum (East China) under grant YCX2020047.

Author information

Authors and Affiliations

Authors

Contributions

F. Xu contributed to Methodology, validation, formal analysis, writing and editing. Y. Zhao and M. Zhang contributed to methodology, validation. Z. Li and L. Zhu contributed to investigation, resources. D. Xia contributed to conceptualization, funding acquisition, chief review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daohong Xia.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with any other people or organizations.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 900 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhao, Y., Zhang, M. et al. Phosphorus-doped Y zeolites for increasing mesopore and Lewis acid in high-efficiency denitrogenation. Res Chem Intermed 49, 4939–4954 (2023). https://doi.org/10.1007/s11164-023-05079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05079-3

Keywords

Navigation