Skip to main content
Log in

Study on effect of O2/H2O/CO2 on CH4 and NOx removal with NTP

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this paper, the influence mechanism of O2/H2O/CO2 on the removal of CH4 and NOx by non-thermal plasma (NTP) combined with selective catalytic reduction of NOx by CH4 (NTP-CH4-SCR) was investigated. The results show that the increase of NTP energy density (0 J/L-491 J/L) promoted the CH4 removal but inhibited the NOx removal in NTP-CH4-SCR. In CH4-SCR, H2O could significantly reduce catalyst activity; adding 0.5% H2O decreased the removal efficiency of CH4 and NOx from 30 to 2.9% and 58.4 to 1.8%, respectively. In NTP-CH4-SCR, the increase of H2O content (0.5–10.4%) contributed to formation of oxidizing free radicals such as OH and HO2; thus, the CH4 removal efficiency increased from 24.1 to 37.4%. The increase of O2 content (0–10%) promoted the adsorption of NO and the reaction of adsorption products with CH4 oxidation products, causing the CH4 removal efficiency increased from 1.3 to 32.3% and NOx removal efficiency increased from 1.5 to 61.6% in CH4-SCR. Increasing O2 (0–10%) produced more O and HO2 radicals in NTP-CH4-SCR, resulting in the increase of CH4 removal efficiency from 18.6 to 44.9%. However, these O and HO2 radicals would react with N radicals to form NO2, NO3, etc., thus decreasing NOx removal efficiency from 68% to 40.8%. The change of CO2 concentration has little effect on CH4 and NOx removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The data and any materials displayed in this manuscript are of availability.

References

  1. Y. Zhang, J. Yu, C. Mo et al. Small Engine Technology Conference & Exposition. (2008)

  2. H. Xie, Y. Zhang, Adv. Mater. Res. 726, 4033 (2013)

    Article  Google Scholar 

  3. B. Huebert, J. Chem. Educ. 51, 644 (1974)

    Article  CAS  PubMed  Google Scholar 

  4. W. Innes, Environ. Sci. Technol. 15, 904 (1981)

    Article  CAS  PubMed  Google Scholar 

  5. W. Jedrychowski, U. Maugeri, E. Flak, G. Ital. Med. Del. Lavor. 9(3–4), 147 (1987)

    CAS  Google Scholar 

  6. J. Kim, S. Smorodinsky, M. Lipsett et al., Am. J. Resp. Crit. Care. 170, 520 (2004)

    Article  Google Scholar 

  7. J. Park, M. Shin, J. Lee et al., Sci. Total. Environ. 767, 144250 (2020)

    Article  PubMed  Google Scholar 

  8. GB 18352.6–2016, Limits and measurement methods for emissions from light-duty vehicles (CHINA 6)

  9. Z. Liu, F. Yu, C. Ma et al., Catal. 9, 771 (2019)

    Article  CAS  Google Scholar 

  10. R. Charrad, H.E. Solt, J. Valyon et al., Chem. Open. 9, 771 (2020)

    Google Scholar 

  11. Y. Shi, J. Pu, L. Gao et al., Chem. Eng. J. 403, 126394 (2020)

    Google Scholar 

  12. Y. Zhu, R. Zhu, G. Zhang, Environ. Ecol. 1(02), 47 (2019)

    Google Scholar 

  13. J. Zhao, G. Zhang, J. He et al., Chemosphere 252, 126458 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. E. Gao, H. Pan, L. Wang et al., Catal. 10, 572 (2020)

    Article  CAS  Google Scholar 

  15. Eiichi, Kikuchi, Masaru, et al. Catal. Surv. Asia (1997)

  16. L. Ren, J. Chem. 2014(4), 1 (2014)

    Article  Google Scholar 

  17. F. Lónyi, H.E. Solt, J. Valyon et al., Mol. Catal. 345, 75 (2011)

    Article  Google Scholar 

  18. A. Kubacka, J. Janas, B. Sulikowski, Appl. Catal. B. Environ. 69, 43 (2006)

    Article  CAS  Google Scholar 

  19. E. Alva, M. Pacheco, A. Colín et al., J. Phys. Conf. 591, 012052 (2015)

    Article  Google Scholar 

  20. T. Huu, S. Gil, P. Costa et al., Catal. Today 257, 86 (2015)

    Article  Google Scholar 

  21. P. Talebizadeh, M. Babaie, R. Brown et al., Renew. Sust. Energ Rev. 40, 886 (2014)

    Article  CAS  Google Scholar 

  22. A. Mendes, V. Zholobenko, F. Thibault-Starzyk et al., Appl. Catal. B. Environ. 195, 121 (2016)

    Article  CAS  Google Scholar 

  23. J. Jolibois, K. Takashima, A. Mizuno, J Electrostat. 70, 300 (2012)

    Article  CAS  Google Scholar 

  24. H. Wang, Q. Yu, T. Liu et al., RSC Adv. 2, 5094 (2012)

    Article  CAS  Google Scholar 

  25. H. Wang, Y. Cao, Z. Chen et al., Fuel 224, 323 (2018)

    Article  CAS  Google Scholar 

  26. H. Pan, Y. Guo, Y. Jian, C. He, Energ. Fuel. 29, 5282 (2015)

    Article  CAS  Google Scholar 

  27. W. Wang, Snoeckx, et al. J Phys. Chem. C. Nanomater. Interfaces 16, 1704 (2018)

    Google Scholar 

  28. Y. Cai, L. Lv, X. Lu, High Voltage. 6, 1092 (2021)

    Article  Google Scholar 

  29. R. Snoeckx, R. Aerts, X. Tu et al., J. Phys. Chem. C 117, 4957 (2013)

    Article  CAS  Google Scholar 

  30. L. Wei, B. Peng, M. Li et al., Plasma Sci. Technol. 18, 147 (2016)

    Article  CAS  Google Scholar 

  31. B. Peng, N. Jiang, X. Yao et al., J. Phys. D. Appl. Phys. 29, 035018 (2019)

    Google Scholar 

  32. V. Guerra, J. Loureiro, Plasma Sources Sci T. 6(3), 373 (1997)

    Article  CAS  Google Scholar 

  33. Z. Chen, V. Mathur, Ind. Eng. Chem. Res 42, 6682 (2003)

    Article  CAS  Google Scholar 

  34. O. Eichwald, M. Yousfi, A. Hennad et al., J. Appl. Phys. 82(10), 4781 (1997)

    Article  CAS  Google Scholar 

  35. V. Guerra, P. Sá, J. Loureiro, J. Phys. D Appl. Phys 34, 1745 (2001)

    Article  CAS  Google Scholar 

  36. S. Yin, B. Sun, X. Gao et al., Plasma Chem Plasma P 29, 421 (2009)

    Article  CAS  Google Scholar 

  37. Q. Yu, T. Liu, H. Wang et al., Chin J Catal 35, 1609 (2012)

    Article  Google Scholar 

  38. C. Lund, Catal Lett. 12(4), 395 (1992)

    Article  CAS  Google Scholar 

  39. J. Zhao, Z. Li, R. Zhu et al., Chemosphere 263, 128171 (2021)

    Article  Google Scholar 

  40. J. Li, W. Sun, IEEE T Plasma Sci. 23(4), 672 (1995)

    Article  CAS  Google Scholar 

  41. G. Zhao, S. Garikipati, X. Hu et al., AIChE J. 51, 1800 (2005)

    Article  CAS  Google Scholar 

  42. Z. Tang, Soochow University (2013)

Download references

Funding

This work has been financially supported by the Weichai Power Co., Ltd. (109–612102381).

Author information

Authors and Affiliations

Authors

Contributions

HL was involved in investigation, experimental, and writing original draft. YC and CX performed investigation, experimental, and writing—review and editing. JS and LL contributed to project administration, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Yunkai Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The paper does not involve relevant ethical research.

Consent for publication

The work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table

Table 3 Plasma chemical reactions included in the model

3

See Table

Table 4 Catalytic reaction

4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cai, Y., Xiang, C. et al. Study on effect of O2/H2O/CO2 on CH4 and NOx removal with NTP. Res Chem Intermed 49, 3681–3703 (2023). https://doi.org/10.1007/s11164-023-04994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04994-9

Keywords

Navigation