Skip to main content

Advertisement

Log in

Development of TiO2 decorated Fe2O3QDs/g-C3N4 Ternary Z-scheme photocatalyst involving the investigation of phase analysis via strain mapping and its photocatalytic performance under visible light illumination

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This study reported the fabrication of TiO2-decorated Fe2O3QDs/g-C3N4 ternary Z-scheme photocatalyst via low-temperature calcination followed by a nonaqueous route with tunable particle size and strong interfacial contact. The subsequent Fe2O3QDs/g-C3N4 and TiO2/Fe2O3QDs/g-C3N4 were investigated in terms of structure, morphology, optical properties, and surface chemical composition analysis via transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive x-ray spectroscopy (EDX), UV–visible spectroscopy, ESR and photoluminescence spectroscopy (PL). The crystalline parameters of the samples were investigated by X-ray diffraction (XRD) The Williamson-Hall method and geometrical phase analysis of HRTEM micrographs were employed to investigate lattice defects. Under visible light, the photocatalytic capabilities of as-fabricated TiO2/Fe2O3QDs/g-C3N4 were examined by degrading Rhodamine B (RhB), and an enhancement in photocatalytic efficacy was found. TiO2 works as a primary photosensitizer, providing extra photoinduced electrons influenced by oxygen vacancies, while Fe2O3 acts as a "bridge" for electron transport from the TiO2 moiety to the g-C3N4 thereby establishing an indirect charge transport pathway based on the Z-scheme. Radical scavenging tests were conducted to further explore the cause of increased activity and degradation mechanisms. Designing materials with oxygen vacancies and optimized structures can lead to improved solar energy conversion capabilities, particularly regarding contaminant removal. The proposed technique might be a viable option for the removal of rhodamine b compounds and for remedying freshwater reservoirs.

Graphical Abstract

TiO2 /Fe2O3QDs/g-C3N4Ternary Z-Scheme Photocatalysts! A facile strategy is exploited to modulate the crystallinity and surface properties of TiO2. TiO2 is incorporated into Fe2O3QDs/g-C3N4 through solvothermal treatment, which results in the formation of surface flaws and lattice-oxygen activated regions as well as the transformation of the Fe2O3QDs/g-C3N4 heterojunction into an indirect z-scheme system by rational modulation of the band alignment of two systems. The electron–hole pair is efficiently separated, conserving the electron reduction capability and the electron oxidation capability of the hole. The adapted structure and mesocrystalline nature resulted in a 7.3-fold improvement in the photocatalytic performance of TFCN over pure g-C3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Scheme 2
Fig. 17

Similar content being viewed by others

Availability of data and materials

The present research results have not been published before. Data and Materials are all in the main text, figures, and tables.

References

  1. C. Bingkun, P. Narayan, Z. Haizheng, J. Phys. Chem. Lett. 9, 435 (2018)

    Article  Google Scholar 

  2. A. Umar, M.S. Akhtar, M.S. Al-Assiri, A.E. Al Salami, S.H. Kim, Ceram Int. 44, 5017 (2018)

    Article  CAS  Google Scholar 

  3. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, Dalton Trans. 42, 8606 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. S. Kamal, S. Balu, S. Palanisamy, K. Uma, V. Velusamy, Results Phys. 12, 1238 (2019)

    Article  Google Scholar 

  5. W. Guo, K. Fan, J. Zhang, C. Xu, Appl. Surf. Sci. 447, 125 (2018)

    Article  CAS  Google Scholar 

  6. S.G. Kumar, L.G. Devi, J. Phys. Chem. 115, 13211 (2011)

    Article  CAS  Google Scholar 

  7. J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, A Nano Micro Lett. 10, 6 (2018)

    Article  Google Scholar 

  8. S. Nayak, K. Parida, Chem Asian J. 16(16), 2211 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. S. Nayak, G. Swain, K. Parida, ACS Appl. Mater. Interf. 11(23), 20923 (2019)

    Article  CAS  Google Scholar 

  10. S. Nayak, K.M. Parida, ACS Omega 3(7), 7324 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Nayak, K. Parida, Catalysts 11(9), 1072 (2021)

    Article  CAS  Google Scholar 

  12. S. Nayak, K. Parida, Inorgan. Chem. Front. 7(20), 3805 (2020)

    Article  CAS  Google Scholar 

  13. V. Rives, M.A. Ulibarri, Coord. Chem. Rev. 181(1), 61 (1999)

    Article  CAS  Google Scholar 

  14. S. Nayak, K.M. Parida, Sci. Rep. 9(1), 2458 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Nayak, K. Parida, Sci. Rep. 12(1), 9264 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Nayak, L. Mohapatra, K. Parida, J. Mater. Chem. A 3(36), 18622 (2015)

    Article  CAS  Google Scholar 

  17. K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J. Phys. Chem. C 113(12), 4940 (2009)

    Article  CAS  Google Scholar 

  18. A.B. Jorge, D.J. Martin, M.T. Dhanoa, A.S. Rahman, N. Makwana, J. Tang, P.F. McMillan, J. Phys. Chem. C 117(14), 7178 (2013)

    Article  CAS  Google Scholar 

  19. J.L. Gunjakar, I.Y. Kim, J.M. Lee, N.-S. Lee, S.-J. Hwang, Energy Environ. Sci. 6, 1008 (2013)

    Article  CAS  Google Scholar 

  20. Y. Jiang, Y. Song, Y. Li, W. Tian, Z. Pan, P. Yang, Y. Li, Q. Gu, L. Hu, ACS Appl. Mater. Interf. 9, 37645 (2017)

    Article  CAS  Google Scholar 

  21. S. Nayak, K.M. Parida, Int. J. Hydrog. Energy 41(46), 21166 (2016)

    Article  CAS  Google Scholar 

  22. Y.S. Xu, W.D. Zhang, Appl. Catal. B 140, 306 (2013)

    Article  Google Scholar 

  23. C. Zhao, L. Liu, G. Rao, H. Zhao, L. Wang, J. Xu et al., Catal. Sci. Technol. 5, 3288e95 (2015)

    Google Scholar 

  24. C. Chen, P. Gunawan, R. Xu, J. Mater. Chem. 21, 121825 (2011)

    Google Scholar 

  25. S. Nayak, A.C. Pradhan, K.M. Parida, Inorg. Chem. 57(14), 8646 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Lei, C.S. Chen, Y.J. Tu, Y.H. Huang, H. Zhang, Environ. Sci. Technol. 49, 6838 (2015). https://doi.org/10.1021/acs.est.5b00623

    Article  CAS  PubMed  Google Scholar 

  27. J. Wang, C. Li, J. Cong, Z. Liu, H. Zhang, M. Liang, J. Gao, S. Wang, J. Yao, J. Solid State Chem. 238, 246 (2016). https://doi.org/10.1016/j.jssc.2016.03.042

    Article  CAS  Google Scholar 

  28. R. Li, Y. Jia, N. Bu, J. Wu, Q. Zhen, J. Alloys. Compd. 643, 88 (2015). https://doi.org/10.1016/j.jallcom.2015.03.266

    Article  CAS  Google Scholar 

  29. X. Chao, H. An, G. Yang, Catal Today 317, 99 (2018). https://doi.org/10.1016/j.cattod.2018.01.023

    Article  CAS  Google Scholar 

  30. H. Gao, Z. Yang, W. Xu, S. Zhang, J. Li, Small 14, 1801353 (2018)

    Article  Google Scholar 

  31. C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, C.M. Li, Angew. Chem. Int. Ed 49, 3014 (2010)

    Article  CAS  Google Scholar 

  32. I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F.H.L. Koppens, G. Konstantatos, Nat. Commun. 7, 11954 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Fu, X. Xiao, A. Wang, J. Phys. Chem. Solids 122, 104 (2018)

    Article  CAS  Google Scholar 

  34. C. Xue, X. Yan, H. An, H. Li, J. Wei, G. Yang, Appl. Catal. B 222, 157 (2018). https://doi.org/10.1016/j.apcatb.2017.10.008

    Article  CAS  Google Scholar 

  35. X. Liu, A. Jin, Y. Jia, J. Jiang, N. Hu, X. Chen, RSC Adv. 5, 92033 (2015). https://doi.org/10.1039/c5ra18466e

    Article  CAS  Google Scholar 

  36. S. Pany, K.M. Parida, Phys. Chem. Chem. Phys. 17(12), 8070 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, J. Yu, J. Power Sources 15(274), 77 (2015)

    Article  Google Scholar 

  38. L. Zhou, L. Wang, Y. Liu, J. Lei, J. Zhang, Phys. Chem. Chem. Phys. 17, 17406 (2015)

    Article  PubMed  Google Scholar 

  39. C. Wang, Z.X. Deng, G. Zhang, S. Fan, Y. Li, Powder Technol. 125, 39 (2002)

    Article  CAS  Google Scholar 

  40. M. Niederberger, M.H. Bartl, J.D. Stucky, J. Am. Chem. Soc. 124, 13642 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. M. Niederberger, G. Garnweitne, Chem. Eur. J. 12, 7282 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. G.V. Jensen, M. Bremholm, N. Lock, G.R. Deen, Chem. Mater. 22, 6044 (2010)

    Article  Google Scholar 

  43. M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Cölfen, M. Antonietti, Chem. Mater. 16, 1202 (2004)

    Article  CAS  Google Scholar 

  44. J. Zhu, J. Yang, Z.F. Bian, J. Ren, Y.M. Liu, Y. Cao, H.X. Li, H.Y. He, K.N. Fan, Appl. Catal. B: Environ. 76, 82 (2007)

    Article  CAS  Google Scholar 

  45. X.J. She, J.J. Wu, H. Xu, J. Zhong, Y. Wang, Y.H. Song, K.Q. Nie, Y. Liu, Y.C. Yang, M.T.F. Rodrigues, R. Vajtai, J. Lou, D.L. Du, H.M. Li, P.M. Ajayan, Adv. Energy matrix. 7, 1700025 (2017)

    Article  Google Scholar 

  46. C. Xue, H. An, X. Yan, J. Li, B. Yang, J. Wei, G. Yang, Nano Energy 39, 513 (2017). https://doi.org/10.1016/j.nanoen.2017.07.030

    Article  CAS  Google Scholar 

  47. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C 115, 17009 (2011)

    Article  CAS  Google Scholar 

  48. A. Mishra, A. Mehta, S. Kainth, S. Basu, J. Alloy. Comp. 764, 406 (2018)

    Article  CAS  Google Scholar 

  49. D. Sha, J. Wang, N. Ye, Y. Dai, J. Ren, M. Chen, X. Yan, Mater. Technol. 32(7), 451 (2017)

    Article  CAS  Google Scholar 

  50. S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1, 7816 (2013)

    Article  CAS  Google Scholar 

  51. W. Ming, Y. Jun-Min, Z. Xue- Wei, Z. Ming, Appl. Surf. Sci. 354, 196 (2015)

    Article  Google Scholar 

  52. J. Hou, S. Jiao, H. Zhu, R.V. Kumar, CrystEngComm 13, 4735 (2011). https://doi.org/10.1039/c1ce05409k

    Article  CAS  Google Scholar 

  53. L. Bo, J. Li, B. Xu, X. Yan, B. Yang, J. Wei, G. Yang, Appl. Catal. B 243, 94 (2019). https://doi.org/10.1016/j.apcatb.2018.10.029

    Article  CAS  Google Scholar 

  54. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal. A Chem. 161, 205 (2000)

    Article  CAS  Google Scholar 

  55. Y. Yao, C. Xu, S. Yu, D. Zhang, S. Wang, Ind. Eng. Chem. Res. 52, 130226103026006 (2013). https://doi.org/10.1021/ie303220x

    Article  CAS  Google Scholar 

  56. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B Environ. 42, 403 (2003)

    Article  CAS  Google Scholar 

  57. B. Zhang, Q. Wang, I. Zhuang, S. Guan, B. Li, J. Photochem. Photobiol. A 362, 1 (2018)

    Article  CAS  Google Scholar 

  58. I. Ibrahim, G.V. Belessiotis, M. Antoniadou, A. Kaltzoglou, E. Sakellis, F. Katsaros, P. Falaras, Results Eng. 14, 100470 (2022)

    Article  CAS  Google Scholar 

  59. C. Zhou, N.F. Ye, X.H. Yan, J.J. Wang, J.M. Pan, D.F. Wang, X.N. Cheng, J. Materiomics 4(3), 238 (2018)

    Article  Google Scholar 

  60. X. Bi, S. Yu, E. Liu, L. Liu, K. Zhang, J. Zang, Y. Zhao, Colloids Surf. A 603, 125193 (2020)

    Article  CAS  Google Scholar 

  61. W. Liao, M. Murugananthan, Y. Zhang, Phys. Chem. Chem. Phys. 17, 8877 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China funds (N.S.F.C.) under Grants No. 10972025, 21876008.

Author information

Authors and Affiliations

Authors

Contributions

Shahid Iqbal wrote the main manuscript text and prepared figures under the supervision of prof. Jianjun Liu. While all the authors reviewed and formally analysed the manuscript.

Corresponding author

Correspondence to J. Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This declaration is “not applicable”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Liu, J., Ma, H. et al. Development of TiO2 decorated Fe2O3QDs/g-C3N4 Ternary Z-scheme photocatalyst involving the investigation of phase analysis via strain mapping and its photocatalytic performance under visible light illumination. Res Chem Intermed 49, 3327–3362 (2023). https://doi.org/10.1007/s11164-023-04987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04987-8

Keywords

Navigation