Skip to main content
Log in

Optimal design of novel honeycomb photocatalytic reactors for numerical analysis of formaldehyde degradation by CFD modeling

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

As an alternative to the investigation of photocatalysts, it is a potential approach to enhance the photocatalytic performance of the novel photocatalytic reactor by optimizing its geometric structure and reaction conditions. In this work, five different honeycomb photocatalytic reactors with a deflector and a porous airflow distribution plate were designed and a numerical simulation was performed based on computational fluid dynamics (CFD). The simulation results showed that a huge vortex appeared near the entrance of the original model and the velocity distribution inside the reactor was non-uniform, whereas these shortcomings could be effectively overcome when using the 45° deflector model (S-4) compared to the other models. Compared to S-1, the photocatalytic conversion rate of formaldehyde for S-4 was boosted by 7.29% at a flow velocity of 0.04 m s−1. In addition, it was found that the photocatalytic conversion rate of formaldehyde increased from 55.45 to 94.73% when the velocity decreased from 0.04 to 0.01 m s−1, and the photocatalytic removal rate of formaldehyde decreased from 94.73 to 70.05% as the relative humidity varied from 20 to 70%. Furthermore, when the irradiance increased from 45 to 265 mW cm−2, the photocatalytic conversion rate of formaldehyde improved by 10.78%. Overall, this work contributes to the design of the novel honeycomb reactor to acquire the optimized construction of the photocatalytic reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. M.N. Anwar, M. Shabbir, E. Tahir, M. Iftikhar, H. Saif, A. Tahir, M.A. Murtaza, M.F. Khokhar, M. Rehan, M. Aghbashlo, M. Tabatabaei, A.-S. Nizami, J. Hazard. Mater. 416, 125851 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. A.H. Goldstein, W.W. Nazaroff, C.J. Weschler, J. Williams, Environ. Sci. Technol. 55, 100 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. T. Salthammer, S. Mentese, R. Marutzky, Chem. Rev. 110, 2536 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Schreck, M. Niederberger, Chem. Mater. 31, 597 (2019)

    Article  CAS  Google Scholar 

  5. R. Bensouilah, L. Olivet, T. Hammedi, S. Pronier, J. Barbier, C. Fontaine, A. Ghorbel, Z. Ksibi, Res. Chem. Intermed. 47, 813 (2021)

    Article  CAS  Google Scholar 

  6. F. Salvadores, O.M. Alfano, M.M. Ballari, Appl. Catal. B 268, 118694 (2020)

    Article  CAS  Google Scholar 

  7. Z. Mortezaei, M. Zendehdel, M.A. Bodaghifard, Res. Chem. Intermed. 46, 2169 (2020)

    Article  CAS  Google Scholar 

  8. S. Weon, F. He, W. Choi, Environ. Sci. Nano 6, 3185 (2019)

    Article  CAS  Google Scholar 

  9. Y. Zhou, Y.L. Yang, R.F. Zhao, Z. Chen, J. Lu, Y. Zhang, L. Tan, Y.D. Shi, Res. Chem. Intermed. 47, 3769 (2021)

    Article  CAS  Google Scholar 

  10. M. Le Bechec, N. Costarramone, T. Pigot, S. Lacombe, Chem. Eng. Technol. 39, 26 (2016)

    Article  Google Scholar 

  11. Y. Boyjoo, H. Sun, J. Liu, V.K. Pareek, S. Wang, Chem. Eng. J. 310, 537 (2017)

    Article  CAS  Google Scholar 

  12. Q. Geng, Q. Wang, Y. Zhang, L. Wang, H. Wang, Res. Chem. Intermed. 39, 1711 (2013)

    Article  CAS  Google Scholar 

  13. Y. Qin, Z. Wang, J. Jiang, L. Xing, K. Wu, Chem. Eng. J. 394, 124917 (2020)

    Article  CAS  Google Scholar 

  14. F. Khodadadian, M.W. de Boer, A. Poursaeidesfahani, J.R. van Ommen, A.I. Stankiewicz, R. Lakerveld, Chem. Eng. J. 333, 456 (2018)

    Article  CAS  Google Scholar 

  15. J. Roegiers, J. van Walsem, S. Denys, Chem. Eng. J. 338, 287 (2018)

    Article  CAS  Google Scholar 

  16. J. van Walsem, J. Roegiers, B. Modde, S. Lenaerts, S. Denys, Chem. Eng. J. 354, 1042 (2018)

    Article  Google Scholar 

  17. Y.M. Jiao, A.T. Kovala, H. Shang, J.A. Scott, Can. J. Chem. Eng. 97, 1760 (2019)

    Article  CAS  Google Scholar 

  18. C. Passalía, O.M. Alfano, R.J. Brandi, Ind. Eng. Chem. Res. 50, 9077 (2011)

    Article  Google Scholar 

  19. M. Tahir, B. Tahir, Appl. Surf. Sci. 377, 244 (2016)

    Article  CAS  Google Scholar 

  20. K.-P. Yu, W.-M.G. Lee, G.-Y. Lin, Aerosol Air. Qual. Res. 15, 1008 (2015)

    CAS  Google Scholar 

  21. K. Yuan, L. Yang, X. Du, Y. Yang, Energy Convers. Manag. 87, 258 (2014)

    Article  CAS  Google Scholar 

  22. H. Chen, F. Chu, L. Yang, O. Ola, X. Du, Y. Yang, Appl. Energy 230, 1403 (2018)

    Article  CAS  Google Scholar 

  23. S.W. Verbruggen, S. Lenaerts, S. Denys, Chem. Eng. J. 262, 1 (2015)

    Article  CAS  Google Scholar 

  24. J.O.B. Lira, H.G. Riella, N. Padoin, C. Soares, Chem. Eng. Process. 154, 107998 (2020)

    Article  CAS  Google Scholar 

  25. S. Roy, T. Bauer, M. Al-Dahhan, P. Lehner, T. Turek, AlChE J. 50, 2918 (2004)

    Article  CAS  Google Scholar 

  26. J. de O.B. Lira, N. Padoin, V.J.P. Vilar, C. Soares, J. Hazard. Mater. 372, 145 (2019)

  27. Y. Boyjoo, M. Ang, V. Pareek, Chem. Eng. Sci. 111, 266 (2014)

    Article  CAS  Google Scholar 

  28. H. Einaga, J. Tokura, Y. Teraoka, K. Ito, Chem. Eng. J. 263, 325 (2015)

    Article  CAS  Google Scholar 

  29. F. Long, B. Deng, Y. Xu, J. Gao, Y. Zhang, J. Water Process Eng. 31, 100824 (2019)

    Article  Google Scholar 

  30. T. Claes, A. Dilissen, M.E. Leblebici, T. Van Gerven, Chem. Eng. J. 361, 725 (2019)

    Article  CAS  Google Scholar 

  31. C. Casado, R. Timmers, A. Sergejevs, C.T. Clarke, D.W.E. Allsopp, C.R. Bowen, R. van Grieken, J. Marugán, Chem. Eng. J. 327, 1043 (2017)

    Article  CAS  Google Scholar 

  32. X. Wang, X. Tan, T. Yu, Ind. Eng. Chem. Res. 53, 18402 (2014)

    Article  CAS  Google Scholar 

  33. T. Ming, H. Gui, T. Shi, H. Xiong, Y. Wu, Y. Shao, W. Li, X. Lu, R. de Richter, Sol. Energy 226, 101 (2021)

    Article  CAS  Google Scholar 

  34. K. Tong, L. Yang, X. Du, Chem. Eng. J. 400, 125988 (2020)

    Article  CAS  Google Scholar 

  35. K. Nakahara, M. Muttakin, K. Yamamoto, K. Ito, Indoor Built Environ. 29, 163 (2019)

    Article  Google Scholar 

  36. S.-Y. Wu, X.-Q. Yan, L. Xiao, Sol. Energy 199, 460 (2020)

    Article  CAS  Google Scholar 

  37. K. Abe, T. Kondoh, Y. Nagano, Int. J. Heat Mass Transf. 37, 139 (1994)

    Article  CAS  Google Scholar 

  38. K. Abe, T. Kondoh, Y. Nagano, Int. J. Heat Mass Transf. 38, 1467 (1995)

    Article  Google Scholar 

  39. J.E. Duran, M. Mohseni, F. Taghipour, Water Qual. Res. J. 50, 21 (2014)

    Article  Google Scholar 

  40. J. Esteban Duran, F. Taghipour, M. Mohseni, Int. J. Heat Mass Transf. 52, 5390 (2009)

    Article  CAS  Google Scholar 

  41. H. Luo, G. Zhang, Z. Hashisho, L. Zhong, Build. Simul. 13, 1095 (2020)

    Article  Google Scholar 

  42. X. Xie, C. Hao, Y. Huang, Z. Huang, Sci. Total Environ. 724, 138059 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. V. Muñoz, C. Casado, S. Suárez, B. Sánchez, J. Marugán, Catal. Today 326, 82 (2019)

    Article  Google Scholar 

  44. Y. Zhao, L. Yue, S. Wang, L. Li, F. Wang, Int. J. Heat Mass Transf. 127, 55 (2018)

    Article  Google Scholar 

  45. F. Dolati, N. Amanifard, H.M. Deylami, Energy 154, 352 (2018)

    Article  Google Scholar 

  46. J.S. Devia-Orjuela, L.A. Betancourt-Buitrago, F. Machuca-Martinez, Environ. Sci. Pollut. Res. Int. 26, 4510 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. S.-Y. Wu, L. Xu, L. Xiao, Renew. Energy 148, 338 (2020)

    Article  CAS  Google Scholar 

  48. D. Kibanova, M. Sleiman, J. Cervini-Silva, H. Destaillats, J. Hazard. Mater. 211–212, 233 (2012)

    Article  PubMed  Google Scholar 

  49. A.H. Mamaghani, F. Haghighat, C.-S. Lee, Appl. Catal. B 203, 247 (2017)

    Article  CAS  Google Scholar 

  50. M. Malayeri, F. Haghighat, C.-S. Lee, Build. Environ. 154, 309 (2019)

    Article  Google Scholar 

  51. M. Malayeri, C.S. Lee, J. Niu, J. Zhu, F. Haghighat, J. Hazard. Mater. 419, 126411 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been funded by the National Natural Science Foundation of China (Grant No. 21403184), the Qinglan Project of Jiangsu Province, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJA430008), and the Scientific Research and Practical Innovation Project for Graduate Students in Jiangsu Province (No. SJCX21_XY015).

Author information

Authors and Affiliations

Authors

Contributions

JG contributed to the investigation, visualization, data curation, and writing—original draft. PD contributed to supervision, conceptualization, funding acquisition, project administration, writing—review and editing. JT contributed to validation. LZ contributed to data curation. CW contributed to the methodology.

Corresponding author

Correspondence to Pengyu Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competition for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This work is submitted in Compliance with Ethical Standards. It is not being submitted nor published elsewhere in any form or language.

Consent to participate

Not applicable, no human subjects are involved.

Consent to publish

The participant has consented to the submission of this work to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Dong, P., Tan, J. et al. Optimal design of novel honeycomb photocatalytic reactors for numerical analysis of formaldehyde degradation by CFD modeling. Res Chem Intermed 49, 1683–1700 (2023). https://doi.org/10.1007/s11164-023-04961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04961-4

Keywords

Navigation