Skip to main content
Log in

Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The different lignin-based biomass activated carbons were prepared by KOH activation from three different lignin sources [corn straw lignin (CSLAC), lignosulfonate lignin (LSAC) and bagasse lignin (BLAC)]. And the effects of different lignin sources, activation temperatures and adsorption conditions (adsorbent dosage, adsorption temperature and pH value) on the removal of phenol were systematically investigated. The results showed that different lignin-based biomass activated carbons, the CSLAC-based activated carbon exhibited the highest specific surface area and phenol adsorption capacity. And the CSLAC-T prepared at 800  °C (CSLAC-800) possessed specific surface area of 1679 m2/g, and the adsorption capacity of phenol reached 612 mg/g. The phenol removal rate of CSLAC-T was positively correlated with the specific surface area, and the adsorption rate of CSLAC-T was significantly higher than that before modification. In addition, the kinetic model, isothermal adsorption model and thermodynamic parameters of the three adsorbents were discussed. The results show that the three lignin-based activated carbons had a large adsorption capacity for phenol, which was spontaneous and exothermic adsorption. The adsorption is mainly through the ππ and hydrogen bond interactions, and hydrophobic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed in the course of the current study are available from the corresponding author on reasonable request.

References

  1. S. Mishra, S.S. Yadav, S. Rawat, J. Singh, J.R. Koduru, J. Environ. Manag. 246, 362 (2019)

  2. X. Peng, K. Zheng, J. Liu, Y. Fan, C. Tang, S. Xiong, Environ. Toxicol. Chem. 37, 7 (2018)

    Article  Google Scholar 

  3. W.Y. Du, Y. Xiao, J.J. Yao, Z. Hao, Y.B. Zhao, Exp. Ther. Med. 13, 1 (2017)

    Google Scholar 

  4. W. Duan, F. Meng, H. Cui, Y. Lin, G. Wang, J. Wu, Ecotox. Environ. Safe 157, 441 (2018)

    Article  CAS  Google Scholar 

  5. Z. Darvishi Chaghaganooj, N. Asasian-Kolur, S. Sharifian, M. Sillanpää, J. Environ. Chem. Eng. 9, 4 (2021)

    Article  Google Scholar 

  6. Z. Dong, R. Zhou, L. Xiong, H. Li, Q. Liu, L. Zheng, Z. Guo, Z. Deng Nanoscale Adv. 2, 1 (2020)

    Article  Google Scholar 

  7. Q. Sun, M. Liu, K. Li, Y. Zuo, Y. Han, J. Wang, C. Song, G. Zhang, X. Guo, CrystEngComm 17, 37 (2015)

    Google Scholar 

  8. J.L. Jing Shen, F. Li, H. Zhao, Z. Dua, F. Cheng, Chem. Eng. J. 417, 128091 (2020)

    Article  Google Scholar 

  9. A.K. Singh, M. Bilal, H.M.N. Iqbal, A.S. Meyer, A. Raj, Sci. Total Environ. 777, 145988 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. L. Liu, S.J. Tan, T. Horikawa, D.D. Do, D. Nicholson, J. Liu, Adv. Colloid Interface 250, 64 (2017)

  11. K. Jun, Han, Yoon. Kim and Park WATER-SUI 11, 9 (2019)

    Google Scholar 

  12. G. Issabayeva, S.Y. Hang, M.C. Wong, M.K. Aroua, Rev. Chem. Eng. 34, 6 (2018)

    Article  Google Scholar 

  13. A. Ahmad, S. Hamidah Mohd Setapar, A. Ali Yaqoob, M. Nasir Mohamad Ibrahim, Mater Today: Proceedings 47, 1359 (2021)

  14. Z. Chai, P. Lv, Y. Bai, J. Wang, X. Song, W. Su, G. Yu, RSC Adv. 12, 11 (2022)

    Article  Google Scholar 

  15. N.A. Khan, S.H. Jhung, J Hazard Mater 325, 198 (2017)

  16. A. Supong, P.C. Bhomick, R. Karmaker, S.L. Ezung, L. Jamir, U.B. Sinha, D. Sinha, Appl Surf Sci 529, 147046 (2020)

  17. R. Singh, R.K. Dutta, D.V. Naik, A. Ray and P.K. Kanaujia, Environ. Chall 5, 100353 (2021)

  18. I. Stoycheva, B. Tsyntsarski, B. Petrova, G. Georgiev, T. Budinova, N. Petrov, B. Trzebicka, S. Pusz, B. Kumanek, U. Szeluga, Appl. Sci. 12, 4 (2022)

    Article  Google Scholar 

  19. D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.L. Dotto, J. Environ. Chem. Eng. 9, 5 (2021)

    Google Scholar 

  20. T. Song, R. Deng, J. Gao, J. Yi, P. Liu, X. Yang, Z. Zhang, B. Han, Y. Zhang, Ind. Crop. Prod. 180, 114764 (2022)

  21. D. Stewart, Ind Crop Prod 27, 2 (2008)

    Article  Google Scholar 

  22. D. Kai, M.J. Tan, P.L. Chee, Y.K. Chua, Y.L. Yap, X.J. Loh, Green Chem 18, 5 (2016)

    Article  Google Scholar 

  23. M. Lievonen, J.J. Valle-Delgado, M.-L. Mattinen, E.-L. Hult, K. Lintinen, M.A. Kostiainen, A. Paananen, G.R. Szilvay, H. Setälä, M. Österberg, Green Chem. 18, 5 (2016)

    Article  Google Scholar 

  24. S.I. Mussatto, M. Fernandes, G.J. Rocha, J.J. Orfao, J.A. Teixeira, I.C. Roberto, Bioresource Technol 101, 7 (2010)

    Article  Google Scholar 

  25. K. Fu, Q. Yue, B. Gao, Y. Sun, L. Zhu, Chem. Eng. J. 228, 1074 (2013)

  26. Y. Gao, Q. Yue, B. Gao, Y. Sun, W. Wang, Q. Li and Y. Wang, Chem. Eng. J. 217, 345 (2013)

  27. J.-P. Simonin, Chem. Eng. J. 300, 254 (2016)

  28. N. Ponomarev, O. Pastushok, E. Repo, B. Doshi, M. Sillanpää, A.C.S. Appl, Nano Mater. 2, 9 (2019)

    Google Scholar 

  29. E.C. Nnadozie, P.A. Ajibade, Data Brief 32, 106292 (2020)

  30. A. Arabpour, S. Dan, H. Hashemipour, Arab. J. Chem. 14, 3 (2021)

    Article  Google Scholar 

  31. L.N. Rozanov, Vacuum 189, 110267 (2021)

  32. P. Mishra, K. Singh and U. Dixit, Sustain. Chem. Pharm. 22, 100491 (2021)

  33. C. Vasile, G.E. Zaikov, New trends in natural and synthetic polymer science (Nova Publishers, Hauppauge, 2006)

    Google Scholar 

  34. C. Liu, J. Hu, H. Zhang, R. Xiao, Fuel 182, 864 (2016)

  35. T. Nakamura, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrol. 81, 2 (2008)

    Article  Google Scholar 

  36. J. Kibet, L. Khachatryan, B. Dellinger, Environ. Sci. Technol. 46, 23 (2012)

    Article  Google Scholar 

  37. S. Hu, Y.-L. Hsieh, J. Mater. Chem. A 1, 37 (2013)

    Google Scholar 

  38. J. Liu, Y. Liu, J. Peng, Z. Liu, Y. Jiang, M. Meng, W. Zhang, L. Ni, Water Air Soil Poll. 229, 12 (2018)

    Article  Google Scholar 

  39. T.C.E. Gonzalez-Serrano, J. Rodríguez-Mirasol, J. Rodríguez, Mater. Interfaces 36, 11 (1997)

    Google Scholar 

  40. Y. Wang, S.L. Wang, T. Xie, J. Cao, Bioresource Technol. 316, 123929 (2020)

  41. J. Zhou, A. Luo, Y. Zhao, J. Air Waste Manag. 68, 12 (2018)

    Article  Google Scholar 

  42. Z. Xu, Z. Yuan, D. Zhang, W. Chen, Y. Huang, T. Zhang, D. Tian, H. Deng, Y. Zhou and Z. Sun, J. Clean Prod. 192, 453 (2018)

  43. M. Jain, S.A. Khan, A. Sahoo, P. Dubey, K.K. Pant, Z.M. Ziora, M.A.T. Blaskovich, Bioresource Technol. 352, 127030 (2022)

  44. S. Lv, C. Li, J. Mi, H. Meng, Appl Surface Sci. 510, 145425 (2020)

  45. K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida, Chem. Eng. J. 286, 476 (2016)

  46. W. Jin, D. Shen, Q. Liu, R. Xiao, Polym. Degrad. Stab. 133, 65 (2016)

    Article  CAS  Google Scholar 

  47. S. Wang, H. Lin, B. Ru, W. Sun, Y. Wang, Z. Luo, J. Anal. Appl. Pyrol. 108, 78 (2014)

    Article  CAS  Google Scholar 

  48. M.A. Bedmohata, A.R. Chaudhari, S.P. Singh, M.D. Choudhary, Int. J Adv. Res. Chem. Sci. 2, 8 (2015)

  49. M. Kumar, S.N. Upadhyay, P.K. Mishra, Bioresource Technol. Rep. 8, 100186 (2019)

  50. S.A. Sajjadi, A. Mohammadzadeh, H.N. Tran, I. Anastopoulos, G.L. Dotto, Z.R. Lopicic, S. Sivamani, A. Rahmani-Sani, A. Ivanets, A. Hosseini-Bandegharaei, J. Environ. Manag. 223, 1001 (2018)

  51. S. Xia, N. Cai, J. Wu, H. Xiao, J. Hu, X. Chen, Y. Chen, H. Yang, X. Wang, H. Chen, Fuel Process Technol. 209, 106543 (2020)

  52. F. Ghorbani, S. Kamari, S. Zamani, S. Akbari, M. Salehi, Surface Interfaces 18, 100444 (2020)

  53. M.A.A. Akl, J. Anal. Bioanal. Tech. 5, 2 (2014)

    Article  Google Scholar 

  54. G. Lv, J. Liu, Z. Xiong, Z. Zhang, Z. Guan, J. Chem. Eng. Data 61, 11 (2016)

    Google Scholar 

  55. L. Jiang, Y. Chen, Y. Wang, J. Lv, P. Dai, J. Zhang, Y. Huang, W. Lv, ACS Omega 7, 12 (2022)

    Google Scholar 

  56. F. Tomul, Y. Arslan, B. Kabak, D. Trak, H.N. Tran, J. Chem. Technol. Biot. 96, 4 (2021)

    Google Scholar 

  57. M. Li, Y. Wang, Y. Liu, H. Wang, H. Song, Res. Chem. Intermediat. 48, 4 (2022)

    Google Scholar 

  58. M. Zbair, K. Ainassaari, A. Drif, S. Ojala, M. Bottlinger, M. Pirila, R.L. Keiski, M. Bensitel, R. Brahmi, Environ. Sci. Pollut. Res. Int. 25, 2 (2018)

    Google Scholar 

  59. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, J. Mol. Liquids 273, 425 (2019)

  60. N.A.S. Mohammed, R.A. Abu-Zurayk, I. Hamadneh, A.H. Al-Dujaili J, Environ. Manag. 226, 337 (2018)

  61. T. Phatthanakittiphong, G. Seo, Nanomater. Basel 6, 7 (2016)

    Article  Google Scholar 

  62. L. Spessato, K.C. Bedin, A.L. Cazetta, I. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida, J. Hazard Mater. 371, 499 (2019)

  63. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Desalin Water Treatm. 57, 12 (2015)

    Google Scholar 

  64. A. Agarwal, M. Rana, J.-H. Park, Fuel Process Technol. 181, 115 (2018)

    Article  CAS  Google Scholar 

  65. C. Chio, M. Sain, W. Qin, Renew. Sustain. Energ. Rev. 107, 232 (2019)

    Article  CAS  Google Scholar 

  66. B. Wang, S.-F. Wang, S.S. Lam, C. Sonne, T.-Q. Yuan, G.-Y. Song, R.-C. Sun, Renew. Sustain. Energ. Rev. 134, 110384 (2020)

    Article  CAS  Google Scholar 

  67. X. Kong, H. Gao, X. Song, Y. Deng, Y. Zhang, Chem. Phys. Lett. 739, 137046 (2020)

    Article  CAS  Google Scholar 

  68. T.V. Tran, V.D. Cao, V.H. Nguyen, B.N. Hoang, D.-V.N. Vo, T.D. Nguyen, L.G. Bach, J. Environ. Chem. Eng. 8, 1 (2020)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ML was involved in experimental research, writing—original draft, formal analysis, validation. JM helped in experimental research. YL contributed to formal analysis. HW was involved in characterization. YW helped in analysis of experimental results. HS contributed to writing review and editing, supervision, project administration, funding acquisition.

Corresponding authors

Correspondence to Jincheng Mu or Hua Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not involve any animal experiment or human subject experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 763 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Mu, J., Liu, Y. et al. Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater. Res Chem Intermed 49, 2209–2232 (2023). https://doi.org/10.1007/s11164-023-04958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04958-z

Keywords

Navigation