Skip to main content
Log in

A selective and efficient chemosensor for the rapid detection of arsenic ions in aqueous medium

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The development of selective, efficient, and economical sensors for the rapid determination of arsenic in an aqueous medium is of paramount importance, due to its negative impact on human health. In this study, zinc nanoparticles (ZnNPs) were prepared based on chitosan-functionalized Congo red dye (CFCR) via chemical synthesis. The characterization of the as-prepared material showed an interaction between Zn salt and CFCR. The FT-IR spectra revealed the presence of absorbing functional groups and suggest the formation of a cyclometalated-azo-compound due to a possible interaction between Zn and the N=N azo bond of CFCR. Also, TGA studies affirm that the presence of Zn increases the compactness of the material, thereby reducing the amount of weight loss via high-temperature pyrolysis. A monoclinic semicrystalline phase of CFCR-ZnNPs was revealed by XRD, while an oval-shaped and irregular particle distribution with sizes ⁓100 nm was observed in the TEM. The aqueous solution of CFCR-ZnNPs displayed excellent selective chemosensory property toward As3+ with an immediate color change from pink to blue. The new chemosensor was able to detect arsenic to as low as 1 µg/mL at lower pH which is below the permissible limit of 10 µg/mL in drinking water. Thus, the newly prepared material could be used for the selective detection of the As3+ ions aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.P. Singh, R.K. Goel, T. Kaur, Toxicol. Int. 18, 87 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  2. S. Shankar, U. Shanker, Sci. World J. 2014, 1 (2014)

    Article  Google Scholar 

  3. C. Gramling, Up to 220 million people globally may be at risk of arsenic-contaminated water. ScienceNews. https://www.sciencenews.org/article/arsenic-contamination-drinking-water-global-map-risk (2020)

  4. K.M. McCarty, H.T. Hanh, K.W. Kim, Rev. Environ. Health 26, 71 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.A. Ahmad, M.H. Khan, M. Haque, Risk Manag. Healthc Policy 11, 251 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S.M.I. Huq, J.C. Joardar, S. Parvin, R. Correll, R. Naidu, J. Heal. Popul. Nutr. 24, 305 (2006)

    Google Scholar 

  7. E.C. Gillispie, T.D. Sowers, O.W. Duckworth, M.L. Polizzotto, Curr. Pollut. Reports 1, 1 (2015)

    Article  CAS  Google Scholar 

  8. N. Yogarajah, S.S.H. Tsai, Environ. Sci. Water Res. Technol. 1, 426 (2015)

    Article  CAS  Google Scholar 

  9. A.H. Smith, C.M. Steinmaus, Br. Med. J. 342, 1036 (2011)

    Article  Google Scholar 

  10. J.R. Behari, R. Prakash, Chemosphere 63, 17 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Angew. Chemie - Int. Ed. 47, 6456 (2008)

    Article  CAS  Google Scholar 

  12. D. Sánchez-Rodas, W.T. Corns, B. Chen, P.B. Stockwell, J. Anal. At. Spectrom. 25, 933 (2010)

    Article  Google Scholar 

  13. M. Colon, M. Hidalgo, M. Iglesias, Talanta 85, 1941 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. J.F.R. Paula, R.E.S. Froes-Silva, V.S.T. Ciminelli, Microchem. J. 104, 12 (2012)

    Article  CAS  Google Scholar 

  15. F.E.P. Almaquer, J.S.Y. Ricacho, R.L.G. Ronquillo, Sustain. Environ. Res. 1, 1 (2019)

    Google Scholar 

  16. A.J. Wang, H. Guo, M. Zhang, D.L. Zhou, R.Z. Wang, J.J. Feng, Microchim. Acta 180, 1051 (2013)

    Article  CAS  Google Scholar 

  17. R. Liu, Z. Chen, S. Wang, C. Qu, L. Chen, Z. Wang, Talanta 112, 37 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. N. Ratnarathorn, O. Chailapakul, W. Dungchai, Talanta 132, 613 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. N. Zohora, D. Kumar, M. Yazdani, V.M. Rotello, R. Ramanathan, V. Bansal, Colloids Surf. A Physicochem. Eng. Asp. 532, 451 (2017)

    Article  CAS  Google Scholar 

  20. S. Kannaiyan, A. Gopal, Res. Chem. Intermed. 43, 2693 (2017)

    Article  CAS  Google Scholar 

  21. L. Lei, H. Song, J. Zhao, Q. Yang, Z. Chen, Anal. Methods 11, 4362 (2019)

    Article  CAS  Google Scholar 

  22. G. Ghodake, S. Shinde, A. Kadam, R.G. Saratale, G.D. Saratale, A. Syed, O. Shair, M. Alsaedi, D.Y. Kim, J. Ind. Eng. Chem. 82, 243 (2020)

    Article  CAS  Google Scholar 

  23. S. Balasurya, A. Syed, A.M. Thomas, N. Marraiki, A.M. Elgorban, L.L. Raju, A. Das, S.S. Khan, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 228, 117712 (2020)

    Article  CAS  Google Scholar 

  24. K.B. Narayanan, S.S. Han, Res. Chem. Intermed. 43, 5665 (2017)

    Article  CAS  Google Scholar 

  25. S. Balasurya, P. Ahmad, A.M. Thomas, L.L. Raju, A. Das, S. Sudheer Khan, Opt. Commun. 464, 125512 (2020)

    Article  CAS  Google Scholar 

  26. B.S. Boruah, N.K. Daimari, R. Biswas, Results Phys. 12, 2061 (2019)

    Article  Google Scholar 

  27. M.M. Rahman, M.M. Hussain, M.N. Arshad, M.R. Awual, A.M. Asiri, New J. Chem. 43, 9066 (2019)

    Article  CAS  Google Scholar 

  28. R.N. Moussawi, D. Patra, RSC Adv. 6, 17256 (2016)

    Article  CAS  Google Scholar 

  29. S.K. Pal, N. Akhtar, S.K. Ghosh, Anal. Methods 8, 445 (2016)

    Article  CAS  Google Scholar 

  30. F. Hazzazi, A. Young, C. O’loughlin, T. Daniels-Race, Chemosensors 9, 1 (2021)

    Google Scholar 

  31. S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, Materials (Basel). 4, 1132 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C. Dagdeviren, S.W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F.G. Omenetto, Y. Huang, J.A. Rogers, Small 9, 3398 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. A. Bathinapatla, S. Kanchi, M.I. Sabela, Y.C. Ling, K. Bisetty, and Inamuddin. Food Anal. Methods 13, 2014 (2020)

    Article  Google Scholar 

  34. J. Ji, L. Wang, H. Yu, Y. Chen, Y. Zhao, H. Zhang, W.A. Amer, Y. Sun, L. Huang, M. Saleem, Polym. - Plast. Technol. Eng. 53, 1494 (2014)

    Article  CAS  Google Scholar 

  35. K. Litefti, M.S. Freire, M. Stitou, J. González-Álvarez, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  36. O. Ejeromedoghene, S. Adewuyi, S. A. Amolegbe, C. A. Akinremi, B. A. Moronkola, and T. Salaudeen, Nano-Struct. Nano-Objects (2018).

  37. P. Palai, S. Muduli, B. Priyadarshini, and T. R. Sahoo, Mater. Today Proc. (2020).

  38. A. Gültek, Turkish J. Chem. 34, 437 (2010)

    Google Scholar 

  39. M.D. Lane, Am. Mineral. 92, 1 (2007)

    Article  CAS  Google Scholar 

  40. S. H. Li, C. W. Yu, and J. G. Xu, Chem. Commun. 450 (2005).

  41. S. Kumar, A. Mudai, B. Roy, I.B. Basumatary, A. Mukherjee, J. Dutta, Foods 9, 1143 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  42. M.A. Diab, A.Z. El-Sonbati, M.M. Al-Halawany, D.M.D. Bader, Open J. Polym. Chem. 02, 14 (2012)

    CAS  Google Scholar 

  43. Z. Nasreen, M.A. Khan, A.I. Mustafa, J. Appl. Chem. 2016, 11 (2016). https://doi.org/10.1155/2016/5373670

    Article  Google Scholar 

  44. R. Rajakumaran, A. Krishnapandi, S. Chen, K. Balamurugan, F.M. Chang, S. Sakthinathan, Microchem. J. 160, 105750 (2021). https://doi.org/10.1016/j.microc.2020.105750

    Article  Google Scholar 

  45. G. Tailor, J. Chaudhay, D. Verma, and B. Kr. Sarma, Appl. Microsc. 49, (2019)

  46. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 1 (2013)

    Article  Google Scholar 

  47. J. Winiarski, W. Tylus, K. Winiarska, I. Szczygieł, B. Szczygieł, J. Spectrosc. 2018, 14 (2018) https://doi.org/10.1155/2018/2079278

    Article  Google Scholar 

  48. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 887 (2010)

    Article  CAS  Google Scholar 

  49. K. Steffy, G. Shanthi, A.S. Maroky, S. Selvakumar, J. Adv. Res. 9, 69 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. P. Debnath, N.K. Mondal, Environ. Nanotechnol. Monit. Manag. 14, 100320 (2020)

    Google Scholar 

  51. L. Wang, J. Li, Z. Wang, L. Zhao, Q. Jiang, Dalt. Trans. 42, 2572 (2013)

    Article  CAS  Google Scholar 

  52. S.S.M. Bhat, N.G. Sundaram, RSC Adv. 3, 14371–14378 (2013). https://doi.org/10.1039/c3ra40240a

    Article  CAS  Google Scholar 

  53. M.R. Awual, Chem. Eng. J. 266, 368 (2015)

    Article  CAS  Google Scholar 

  54. V.C. Ezeh, T.C. Harrop, Inorg. Chem. 51, 1213 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. K. Chauhan, P. Singh, B. Kumari, R.K. Singhal, Anal. Methods 9, 1779 (2017)

    Article  CAS  Google Scholar 

  56. J. Wang, H. Tao, T. Lu, Y. Wu, J. Colloid Interface Sci. 584, 114 (2021)

    Article  CAS  PubMed  Google Scholar 

  57. K. Vaid, J. Dhiman, S. Kumar, K.H. Kim, V. Kumar, Chem. Eng. J. 426, 131243 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Adeniyi Afolabi.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no known conflict of interest that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afolabi, T.A., Ejeromedoghene, O., Olorunlana, G.E. et al. A selective and efficient chemosensor for the rapid detection of arsenic ions in aqueous medium. Res Chem Intermed 48, 1747–1761 (2022). https://doi.org/10.1007/s11164-022-04665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04665-1

Keywords

Navigation