Skip to main content

Advertisement

Log in

Effect of reducing gas on the hydrogen production by thermo-oxidation of water over 1%Rh/Ce0.6Zr0.4O2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We have studied the effect of the reducing gas (H2, CO and CH4) on the hydrogen production by thermo-oxidation of water over the 1%Rh/Ce0.6Zr0.4O2 catalyst prepared by impregnation. The catalyst is characterized by hydrogen chemisorption (Hc), before and after catalytic decomposition of water, temperature-programmed desorption, temperature-programmed reduction, X-ray diffraction and scanning electron microscopy. The catalyst is reduced in situ at 500 °C (4 h) under H2, CO or CH4 flows and flushed with Ar gas. Then, pulses of water (1 μL/pulse) are injected at 500 °C under Ar flow (30 mL/min). The results show clearly that the reducing gas has a strong effect on the H2 production which follows the order: H2 > CH4 > > CO. H2 chemisorption measurements at room temperature highlight a strong metal–support interaction over fresh reduced catalysts which decreases after water decomposition (reduced centers + H2O → oxidized centers + H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q.X. Peng, D.X. Shu-Zhong, Z. Chun-LinNi, Appl. Catal. B 219, 07 (2017)

    Article  CAS  Google Scholar 

  2. R. Boudries, Rev. Energy Renew. 8, 17 (2002)

    Google Scholar 

  3. D. Yamashita, K. Tsuno, K. Koike, K. Fujii, S. Wada, M. Sugiyama, Int. J. Hydrogen Energy 44, 27542 (2019)

    Article  CAS  Google Scholar 

  4. T.D. Nguyen, K. Goshome, N. Endo, T. Maeda, Int. J. Hydrogen Energy 44, 26741 (2019)

    Article  CAS  Google Scholar 

  5. K. Cherifi, G. Rekhila, S. Omeiri, Y. Bessekhouad, M. Trari, J. Photochem. Photobiol. A Chem. 5, 368 (2019)

    Google Scholar 

  6. R. Fiorenza, S. Scire, L. D’Urso, G. Compagnini, M. Bellardita, L. Palmisano, Int. J. Hydrogen Energy 44, 14796 (2019)

    Article  CAS  Google Scholar 

  7. Z. Boukhemikhem, R. Brahimi, G. Rekhila, G. Fortas, L. Boudjellal, M. Trari, Renew. Energy 145, 2615 (2020)

    Article  CAS  Google Scholar 

  8. M. Ball, M. Wietschel, Int. J. Hydrogen Energy 34, 615 (2009)

    Article  CAS  Google Scholar 

  9. I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, Energy Environ. Sci. 12, 463 (2018)

    Article  Google Scholar 

  10. M. Zareer, I. Dincer, A. Marc, Energy Conv. Manag. 157, 600 (2018)

    Article  CAS  Google Scholar 

  11. J.E. Funk, Int. J. Hydrogen Energy 26, 185 (2001)

    Article  CAS  Google Scholar 

  12. M.A. Lewis, J.G. Masin, P.A. O’Hare, Int. J. Hydrogen Energy 34, 4115 (2009)

    Article  CAS  Google Scholar 

  13. J. Chi, H. Yu, Chin. J. Catal. 39, 390 (2018)

    Article  CAS  Google Scholar 

  14. R. Camposeco, S. Castillo, V. Rodriguez-Gonzalez, M. Hinojosa-Reyes, I.M.C. Tailored, J. Photochem. Photobiol. A: Chem. 356, 92 (2018)

    Article  CAS  Google Scholar 

  15. F. Sadi, D. Duprez, F. Gérard, S. Rossignol, A. Miloudi, Catal. Lett. 44, 221 (1997)

    Article  CAS  Google Scholar 

  16. S.J. Tauster, Acc. Chem. Res. 20, 389394 (1987)

    Article  Google Scholar 

  17. F. Sadi, D. Duprez, F. Gerard, A. Miloudi, J. Catal. 213, 226 (2003)

    Article  CAS  Google Scholar 

  18. Y. Bu, J. Ren, H. Zhang, D. Yang, Z. Chen, J.P. Ao, J. Mater. Chem. 6, 860 (2018)

    Google Scholar 

  19. F. Safari, I. Dincer, Energy Conv. Manag. 205, 112182 (2020)

    Article  CAS  Google Scholar 

  20. G. Rekhila, Y. Gabes, Y. Bessekhouad, M. Trari, Sol. Energy 166, 220 (2018)

    Article  CAS  Google Scholar 

  21. R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari, Catal. Today 122, 62 (2007)

    Article  CAS  Google Scholar 

  22. G. Rekhila, Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy 40, 12611 (2015)

    Article  CAS  Google Scholar 

  23. N. Bion, Chem. Rep. 19, 1326 (2016)

    CAS  Google Scholar 

  24. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. D. Duprez, A. Miloudi, Stud. Sci. Catal. 11, 179 (1982)

    Article  CAS  Google Scholar 

  26. F.B. Passos, E.R. de Oliveira, L.V. Mattos, F.B. Noronha, Catal. Today 101, 23 (2005)

    Article  CAS  Google Scholar 

  27. M. Yashima, K. Ohtake, M. Kakihana, M. Yoshimura, J. Mater. Sci. Letters. 13, 1564 (1994)

  28. C. Diagne, H.B. Idriss, A. Kiennemann, Catal. Commun. 3, 565 (2002)

    Article  CAS  Google Scholar 

  29. L. Deng, S. He, S. Huang, J. Wang, D. Hea, S. Hea, Y. Luo, Proc. Eng. 102, 417 (2015)

    Article  CAS  Google Scholar 

  30. S.M. Stagg-Williams, F.B. Noronha, G. Fendley, D.E. Resasco, J. Catal. 194, 240 (2000)

    Article  CAS  Google Scholar 

  31. B.M. Rush, J.A. Reimer, E.J. Cairns, J. Electrochem. Soc. 148, A137 (2001)

    Article  CAS  Google Scholar 

  32. J. Cibert, M. Pons, A. Fontaine, M. Lannoo, D. Bouchier, V. Debisschanp, B. Jouans, J. Boucherce, J. Catal. 122, 43 (2004)

    Google Scholar 

  33. S. Eriksson, S. Rojas, M. Boutonnet, J.L.G. Fierro, Appl. Catal. A-Gen. 326, 8 (2007)

    Article  CAS  Google Scholar 

  34. A. Gayen, K.R. Priolkar, P.R. Sarode, V. Jayaram, M.S. Hegde, G.N. Subbanna, S. Emura, Chem. Mater. 16, 2317 (2004)

    Article  CAS  Google Scholar 

  35. P.K. Sharma, N. Saxena, V.K. Bind, P. Kumar, Can. J. Chem. Eng. 752, 94 (2016)

    Google Scholar 

  36. A.C. Sajeevan, V. Sajith, Fuel 183, 155 (2016)

    Article  CAS  Google Scholar 

  37. A. Remiro, A. Arandia, L. Oar-Arteta, J. Bilbao, A.G. Gayubo, Energy Fuels 25, 353 (2018)

    Google Scholar 

  38. L.S.F. Feio, C.E. Hori, S. Damyanova, F.B. Noronha, W.H. Cassinelli, C.M. Marques, J.M.C. Bueno, Appl. Catal. 316, 107 (2007)

    Article  CAS  Google Scholar 

  39. L.V. Mattos, F.B. Noronha, J. Catal. 233, 453 (2005)

    Article  CAS  Google Scholar 

  40. Y. Guo, G. Lu, Z. Zhang, S. Shunhai, Z. Yan, Y. Liu, Catal. Today 126, 296 (2007)

    Article  CAS  Google Scholar 

  41. M. Benamira, H. Lahmar, L. Messadia, G. Rekhila, M. Trari, Int. J. Hydrogen Energy 45, 1719 (2020)

    Article  CAS  Google Scholar 

  42. H. Abid, G. Rekhila, F. Ihaddadene, Y. Bessekhouad, M. Trari, Int. Hydrogen Energy 44, 10301 (2019)

    Article  CAS  Google Scholar 

  43. S. Moon, Y. Matsumura, M. Kitano et al., Res. Chem. Intermed. 29, 233 (2003)

    Article  CAS  Google Scholar 

  44. R. Xiong, H. Yang, Q. Peng et al., Res Chem. Intermed. 43, 5271 (2017)

    Article  CAS  Google Scholar 

  45. A.R. Keshavarz, M. Soleimani, Res. Chem. Intermed. 44, 1485 (2018)

    Article  CAS  Google Scholar 

  46. W. Kong, B. Tian, J. Zhang et al., Res. Chem. Intermed. 39, 1701 (2013)

    Article  CAS  Google Scholar 

  47. Y. Khani, F. Bahadoran, S. Soltanali et al., Res. Chem. Intermed. 44, 925 (2018)

    Article  CAS  Google Scholar 

  48. D. Zhao, Q. Wu, S. Wang et al., Res. Chem. Intermed. 42, 5479 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. O. Mahraoua for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaziza, B., Benamar, A., Helaili, N. et al. Effect of reducing gas on the hydrogen production by thermo-oxidation of water over 1%Rh/Ce0.6Zr0.4O2. Res Chem Intermed 47, 649–661 (2021). https://doi.org/10.1007/s11164-020-04291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04291-9

Keywords

Navigation