Skip to main content
Log in

ZnO nanoparticles photocatalytic activity toward atmospheric toluene under simulated sunlight

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, the photocatalytic degradation of toluene through zinc oxide (ZnO) nanoparticles coated on glass plates was examined under simulated sunlight. Heat attachment procedure was employed to immobilize ZnO nanoparticles on glass plates. Removal performance of these prepared plates for toluene degradation was evaluated in a rectangular reactor under irradiation of metal halide lamp. The effects of operational parameters including initial toluene concentration, temperature, relative humidity, irradiation time, and concentration of zinc oxide suspension on the removal of toluene were investigated. The structural properties of ZnO nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The concentration of toluene was analyzed by gas chromatography with flame ionization detector (GC-FID). The results of the present study indicated that ZnO-coated glass plates resulted in removal of 67% toluene for concentration of 50 ppm at temperature 45 °C, and relative humidity of 40% after 240 min irradiation of metal halide light. As the glass plates coated by ZnO have relatively good performance under experimental conditions, it concluded that coating ZnO nanoparticles on surfaces can be considered as an environmentally friendly method to eliminate low concentration of toluene from polluted air under sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Ji et al., Chem. Eng. J. 327, 490 (2017)

    CAS  Google Scholar 

  2. R.-J. Huang et al., Nature 514(7521), 218 (2014)

    CAS  PubMed  Google Scholar 

  3. ATSDR, Toxicological Profile for Toluene (Public Health Service, 2017)

  4. U.S., E.P.A., Integrated Risk Information System (IRIS) on Toluene (2005)

  5. X. Zhang et al., J. Hazard. Mater. 338, 102 (2017)

    CAS  PubMed  Google Scholar 

  6. Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today 264, 270 (2016)

    CAS  Google Scholar 

  7. M.S. Kamal, S.A. Razzak, M.M. Hossain, Atmos. Environ. 140, 117 (2016)

    CAS  Google Scholar 

  8. A. Berenjian, N. Chan, H.J. Malmiri, Am. J. Biochem. Biotechnol. 8(4), 220 (2012)

    CAS  Google Scholar 

  9. A. Luengas et al., Rev. Environ. Sci. Bio/Technol. 14(3), 499 (2015)

    CAS  Google Scholar 

  10. L. Zhong, F. Haghighat, Build. Environ. 91, 191 (2015)

    Google Scholar 

  11. Y. Boyjoo et al., Chem. Eng. J. 310, 537 (2017)

    CAS  Google Scholar 

  12. R. Tejasvi, M. Sharma, K. Upadhyay, Chem. Eng. J. 262, 875 (2015)

    CAS  Google Scholar 

  13. R.K. Nath, M. Zain, M. Jamil, Renew. Sustain. Energy Rev. 62, 1184 (2016)

    CAS  Google Scholar 

  14. F. Pacheco-Torgal, S. Jalali, Constr. Build. Mater. 25(2), 582 (2011)

    Google Scholar 

  15. S. Shen et al., Constr. Build. Mater. 35, 874 (2012)

    Google Scholar 

  16. Q. Yu, M.M. Ballari, H. Brouwers, Appl. Catal. B 99(1–2), 58 (2010)

    CAS  Google Scholar 

  17. J. Chen, S.-C. Kou, C.-S. Poon, Build. Environ. 46(9), 1827 (2011)

    Google Scholar 

  18. D. Selishchev et al., Appl. Catal. B 200, 503 (2017)

    CAS  Google Scholar 

  19. T. Martinez et al., Build. Environ. 71, 186 (2014)

    Google Scholar 

  20. A.M. Ramirez et al., Build. Environ. 45(4), 832 (2010)

    Google Scholar 

  21. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018)

    CAS  Google Scholar 

  22. L. Lan et al., Appl. Catal. B 203, 494 (2017)

    CAS  Google Scholar 

  23. İ. Altın et al., Appl. Surf. Sci. 258(11), 4861 (2012)

    Google Scholar 

  24. A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 185, 1 (2012)

    Google Scholar 

  25. M.A. Behnajady et al., Desalination 249(3), 1371 (2009)

    CAS  Google Scholar 

  26. M. Gholami et al., J. Environ. Health Sci. Eng. 12(1), 45 (2014)

    PubMed  PubMed Central  Google Scholar 

  27. V. Binas et al., J. Materiomics 5(1), 56 (2019)

    Google Scholar 

  28. M. Sleiman et al., Appl. Catal. B 86(3–4), 159 (2009)

    CAS  Google Scholar 

  29. L. Hu et al., J. Mol. Catal. A Chem. 411, 203 (2016)

    CAS  Google Scholar 

  30. O. Debono et al., Appl. Catal. B 106(3–4), 600 (2011)

    CAS  Google Scholar 

  31. S. Yao, H. Kuo, Procedia Eng. 102, 1254 (2015)

    CAS  Google Scholar 

  32. J. Mo et al., Atmos. Environ. 43(14), 2229 (2009)

    CAS  Google Scholar 

  33. C.W. Yu, J.T. Kim, Indoor Built Environ. 22(1), 39 (2013)

    Google Scholar 

  34. A.H. Mamaghani, F. Haghighat, C.-S. Lee, Appl. Catal. B 203, 247 (2017)

    CAS  Google Scholar 

  35. J. Lyu, L. Zhu, C. Burda, Catal. Today 225, 24 (2014)

    CAS  Google Scholar 

  36. H. Huang et al., Chem. Eng. J. 259, 534 (2015)

    CAS  Google Scholar 

  37. T.-D. Pham, B.-K. Lee, C.-H. Lee, Appl. Catal. B 182, 172 (2016)

    CAS  Google Scholar 

  38. A. Gandolfo et al., Appl. Catal. B 166, 84 (2015)

    Google Scholar 

  39. Q. Yu, H. Brouwers, Appl. Catal. B 92(3–4), 454 (2009)

    CAS  Google Scholar 

  40. A. Rezaee et al., Environ. Chem. Lett. 12(2), 353 (2014)

    CAS  Google Scholar 

  41. M. Rismanchian, J. Akbari, R. Keshavarzi, Int. J. Environ. Health Eng. 3(1), 29 (2014)

    Google Scholar 

  42. A. Rezaee et al., Iran J Environ Health Sci Eng 5(4), 305 (2008)

    CAS  Google Scholar 

  43. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170(2–3), 520 (2009)

    CAS  PubMed  Google Scholar 

  44. A. Senthilraja et al., J. Ind. Eng. Chem. 33, 51 (2016)

    CAS  Google Scholar 

  45. M. Jafarikojour et al., Clean 43(5), 662 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Iran University of Medical Sciences (Grant Number 27576). We would like to thank Iran University of Medical Sciences for financially supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Hasham Firooz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A.J., Kalantari, R.R., Kermani, M. et al. ZnO nanoparticles photocatalytic activity toward atmospheric toluene under simulated sunlight. Res Chem Intermed 46, 119–131 (2020). https://doi.org/10.1007/s11164-019-03938-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03938-6

Keywords

Navigation