Skip to main content
Log in

Detailed characteristics of adsorption of bisphenol A by highly hydrophobic MCM-41 mesoporous molecular sieves

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A surfactant structure-directing agent was used to synthesize a hydrophobic mesoporous material (MCM-41-d) at room temperature. As-prepared materials were characterized through X-ray diffraction (XRD) analysis, Fourier-transform infrared (FT-IR) spectroscopy, N2 adsorption–desorption isotherm analysis, and thermogravimetry (TG). The properties of the samples for adsorption of bisphenol A (BPA) from water were also investigated in detail. The results revealed that pH affected BPA adsorption. Equilibrium and kinetic data were consistent with the Langmuir adsorption and second-order kinetic model, respectively. The adsorption capacity of MCM-41-d was considerably higher than that of MCM-41-c because of its higher hydrophobicity and more abundant adsorption sites. The maximum adsorption capacity of MCM-41-d was as high as 416.7 mg/g, indicating that MCM-41-d can serve as an efficient adsorbent to remove BPA from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Ren, W. Ma, J. Ma et al., Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water. J. Colloid. Interface Sci. 367, 355–361 (2012)

    Article  CAS  Google Scholar 

  2. L. Joseph, J. Heo, Y. Park, J.R. Flora, Y. Yoon, Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water. Desalination 281, 68–74 (2011)

    Article  CAS  Google Scholar 

  3. L.N. Vandenberg, R. Hauser, M. Marcus, N. Olea, W.V. Welshons, Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24, 139–177 (2007)

    Article  CAS  Google Scholar 

  4. G. Mezohegyi, B. Erjavec, R. Kaplan, A. Pintar, Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation. Ind. Eng. Chem. Res. 52, 9301–9307 (2013)

    Article  CAS  Google Scholar 

  5. Y. Park, Z. Sun, G.A. Ayoko, R.L. Frost, Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water. Chemosphere 107, 249–256 (2014)

    Article  CAS  Google Scholar 

  6. J. Bohdziewicz, G. Liszczyk, Evaluation of effectiveness of bisphenol A removal on domestic and foreign activated carbons. Ecol. Chem. Eng. S 20, 371–379 (2013)

    CAS  Google Scholar 

  7. K. Chang, J. Hsieh, B. Ou et al., Adsorption studies on the removal of an endocrine-disrupting compound (Bisphenol A) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47, 1514–1521 (2012)

    Article  CAS  Google Scholar 

  8. G. Yang, Y. Deng, J. Wang, Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing. Ceram. Int. 40, 7401–7406 (2014)

    Article  CAS  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  10. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  11. J. Xie, W. Meng, D. Wu, Z. Zhang, H. Kong, Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. J. Hazard. Mater. 231232, 57–63 (2012)

    Article  Google Scholar 

  12. Y. Kim, B. Lee, K. Choo, S. Choi, Selective adsorption of bisphenol A by organic–inorganic hybrid mesoporous silicas. Microporous Mesoporous Mater. 138, 184–190 (2011)

    Article  CAS  Google Scholar 

  13. T.A. Ribeiro-Santos, F.F. Henriques, J. Villarroel-Rocha et al., Hydrophobic channels produced by micelle-structured CTAB inside MCM-41 mesopores: a unique trap for the hazardous hormone ethinyl estradiol. Chem. Eng. J. 283, 1203–1209 (2016)

    Article  CAS  Google Scholar 

  14. Y. Hu, Y. He, X. Wang, C. Wei, Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves. Appl. Surf. Sci. 311, 825–830 (2014)

    Article  CAS  Google Scholar 

  15. P.A. Mangrulkar, S.P. Kamble, J. Meshram, S.S. Rayalu, Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater. 160, 414–421 (2008)

    Article  CAS  Google Scholar 

  16. M. Kruk, M. Jaroniec, R. Ryoo, S.H. Joo, Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12, 1414–1421 (2000)

    Article  CAS  Google Scholar 

  17. M. Kruk, M. Jaroniec, Y. Sakamoto et al., Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction. J. Phys. Chem. B 104, 292–301 (2000)

    Article  CAS  Google Scholar 

  18. S. Samanta, S. Giri, P.U. Sastry et al., Synthesis and characterization of iron-rich highly ordered mesoporous Fe-MCM-41. Ind. Eng. Chem. Res. 42, 3012–3018 (2003)

    Article  CAS  Google Scholar 

  19. L. Juang, C. Wang, C. Lee, Adsorption of basic dyes onto MCM-41. Chemosphere 64, 1920–1928 (2006)

    Article  CAS  Google Scholar 

  20. T. De Mes, G. Zeeman, G. Lettinga, Occurrence and fate of estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for domestic wastewater. Rev. Environ. Sci. Biotechnol. 4, 275–311 (2005)

    Article  Google Scholar 

  21. L. Huang, Q. Huang, H. Xiao, M. Eić, Effect of cationic template on the adsorption of aromatic compounds in MCM-41. Microporous Mesoporous Mater. 98, 330–338 (2007)

    Article  CAS  Google Scholar 

  22. Y. Zhou, P. Lu, J. Lu, Application of natural biosorbent and modified peat for bisphenol a removal from aqueous solutions. Carbohydr. Polym. 88, 502–508 (2012)

    Article  CAS  Google Scholar 

  23. J.E.B. Cayllahua, R.J. de Carvalho, M.L. Torem, Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel (II) ions onto bacteria strain, Rhodococcus opacus. Miner. Eng. 22, 1318–1325 (2009)

    Article  CAS  Google Scholar 

  24. Y. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  25. J. Xu, L. Wang, Y. Zhu, Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28, 8418–8425 (2012)

    Article  CAS  Google Scholar 

  26. Y. Dong, D. Wu, X. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite. J. Colloid Interface Sci. 348, 585–590 (2010)

    Article  CAS  Google Scholar 

  27. Y. Zhang, Y. Cheng, N. Chen et al., Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide–magnetic nanoparticles: adsorption and desorption. J. Colloid Interface Sci. 421, 85–92 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21277051, 21577039), Science and Technology Planning Project of Guangdong Province, China (2015A020215004), and Science and Technology Planning Project of Guangzhou City, China (12C62081602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, Y., Huang, J. et al. Detailed characteristics of adsorption of bisphenol A by highly hydrophobic MCM-41 mesoporous molecular sieves. Res Chem Intermed 42, 7169–7183 (2016). https://doi.org/10.1007/s11164-016-2526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2526-7

Keywords

Navigation