Skip to main content
Log in

Hydrothermal synthesis and characterization of In3+ modified BiVO4 nanoparticles with enhanced photocatalytic activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In3+-doped BiVO4 nanoparticles with enhanced visible light activity have been successfully synthesized by a hydrothermal method. The synthesized materials were characterized by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, scanning electron microscopy, BET surface areas analysis, and ultraviolet–visible diffuse reflectance spectra. In comparison with pure BiVO4, the In3+-doped BiVO4 displayed greater photocatalytic activity in the degradation of methyl blue under visible light illumination. All samples possessed a single monoclinic structure. The introduction of In ions resulted in structural distortion and the decreased band gap energy, producing more electrons and holes for photocatalytic reaction. In the meantime, the doping In ions entails a red shift in the absorption edge and an increase in the intensity of light absorption. The best photocatalytic performance was obtained with the BiVO4 sample containing 5.0 mol% In ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Obregon, G. Colon, Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst. Appl. Catal. B 152, 328–334 (2014)

    Article  Google Scholar 

  2. F. Guo, W. Shi, X. Lin, G. Che, Hydrothermal synthesis of graphitic carbon nitride-BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J. Phys. Chem. Solids 75, 1217–1222 (2014)

    Article  CAS  Google Scholar 

  3. G.P. Nagabhushana, G. Nagaraju, G.T. Chandrappa, Synthesis of bismuth vanadate: its application in H-2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 1, 388–394 (2013)

    Article  CAS  Google Scholar 

  4. J. Zhang, B. Wang, C. Li, J. Zhai, Q. Li, Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties. J. Environ. Sci. 26, 1936–1942 (2014)

    Article  Google Scholar 

  5. S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 13, 4624–4628 (2001)

    Article  CAS  Google Scholar 

  6. B.-X. Lei, L.-L. Zeng, P. Zhang, Z.-F. Sun, W. Sun, X.-X. Zhang, Hydrothermal synthesis and photocatalytic properties of visible-light induced BiVO4 with different morphologies. Adv. Powder Technol. 25, 946–951 (2014)

    Article  CAS  Google Scholar 

  7. Q. Yu, Z.-R. Tang, Y.-J. Xu, Synthesis of BiVO4 nanosheets-graphene composites toward improved visible light photoactivity. J. Energy. Chem. 23, 564–574 (2014)

    Article  Google Scholar 

  8. W.J. Jo, J.-W. Jang, K.-J. Kong, H.J. Kang, J.Y. Kim, H. Jun, K.P.S. Parmar, J.S. Lee, Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. Int. Ed. 51, 3147–3151 (2012)

    Article  CAS  Google Scholar 

  9. M. Wang, Y. Che, C. Niu, M. Dang, D. Dong, Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange. J. Rare Earths 31, 878–884 (2013)

    Article  CAS  Google Scholar 

  10. Y. Park, D. Kang, K.-S. Choi, Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes. Phys. Chem. Chem. Phys. 16, 1238–1246 (2014)

    Article  CAS  Google Scholar 

  11. L. Zhang, E. Reisner, J.J. Baumberg, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation. Energy Environ. Sci. 7, 1402–1408 (2014)

    Article  CAS  Google Scholar 

  12. X. Zhang, Synthesis of Ni doped InVO4 for enhanced photocatalytic hydrogen evolution using glucose as electron donor. Catal. Lett. 144, 1253–1257 (2014)

    Article  CAS  Google Scholar 

  13. J. Huang, G. Tan, L. Zhang, H. Ren, A. Xia, C. Zhao, Enhanced photocatalytic activity of tetragonal BiVO4: influenced by rare earth ion Yb3+. Mater. Lett. 133, 20–23 (2014)

    Article  CAS  Google Scholar 

  14. S. Obregon, G. Colon, Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl. Catal. B 158, 242–249 (2014)

    Article  Google Scholar 

  15. W. Zhang, J. Chen, H. He, Properties of In-TiO2 photocatalyst as the factors of indium doping content and calcination temperature. J. Adv. Oxid. Technol. 17, 365–371 (2014)

    CAS  Google Scholar 

  16. A.M. Abdulkarem, E.M. Elssfah, N.-N. Yan, G. Demissie, Y. Yu, Photocatalytic activity enhancement of CdS through in doping by simple hydrothermal method. J. Phy. Chem. Solids 74, 647–652 (2013)

    Article  CAS  Google Scholar 

  17. R. Yousefi, F. Jamali-Sheini, A.K. Zak, M.R. Mahmoudian, Effect of indium concentration on morphology and optical properties of In-doped ZnO nano structures. Ceram. Int. 38, 6295–6301 (2012)

    Article  CAS  Google Scholar 

  18. H. Kou, Y. Jiang, J. Li, S. Yu, C. Wang, Enhanced photoelectric performance of Cu2–xSe nanostructure by doping with In3+. J. Mater. Chem. 22, 1950–1956 (2012)

    Article  CAS  Google Scholar 

  19. J. Su, X.-X. Zou, G.-D. Li, X. Wei, C. Yan, Y.-N. Wang, J. Zhao, L.-J. Zhou, J.-S. Chen, Macroporous V2O5BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges. J. Phys. Chem. C 115, 8064–8071 (2011)

    Article  CAS  Google Scholar 

  20. S. Obregon, G. Colon, Improved O-2 evolution from a water splitting reaction over Er3+ and Y3+co-doped tetragonal BiVO4. Catal. Sci. Technol. 4, 2042–2050 (2014)

    Article  CAS  Google Scholar 

  21. M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, Synthesis and characterisation of bismuth(III) vanadate. J. Mol. Struct. 744–747, 535–540 (2005)

    Google Scholar 

  22. A.M. Abdulkarem, A.A. Aref, A. Abdulhabeeb, Y.-F. Li, Y. Yu, Synthesis of Bi2O3/Cu2O nanoflowers by hydrothermal method and its photocatalytic activity enhancement under simulated sunlight. J. Alloy. Compd. 560, 132–141 (2013)

    Article  CAS  Google Scholar 

  23. Z. He, Y. Shi, C. Gao, L. Wen, J. Chen, S. Song, BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 118, 389–398 (2014)

    Article  CAS  Google Scholar 

  24. A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)

    Article  CAS  Google Scholar 

  25. Y. Ma, H. Jiang, X. Zhang, J. Xing, Y. Guan, Synthesis of hierarchical m-BiVO4 particles via hydro-solvothermal method and their photocatalytic properties. Ceram. Int. 40, 16485–16493 (2014)

    Article  CAS  Google Scholar 

  26. M. Wang, C. Niu, Q. Liu, Y. Che, J. Liu, Enhanced photo-degradation methyl orange by N-F co-doped BiVO4 synthesized by sol-gel method. Mater. Sci. Semicond. Process. 25, 271–278 (2014)

    Article  CAS  Google Scholar 

  27. Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, S.-F. Yin, Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(VI) under visible light. Chem. Eng. J. 255, 394–402 (2014)

    Article  CAS  Google Scholar 

  28. W. Luo, Z. Li, T. Yu, Z. Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of mo-doped BiVO4. J. Phys. Chem. C 116, 5076–5081 (2012)

    Article  CAS  Google Scholar 

  29. Y. Wang, H. Dai, J. Deng, Y. Liu, H. Arandiyan, X. Li, B. Gao, S. Xie, 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci. 24, 62–70 (2013)

    Article  Google Scholar 

  30. Y. Li, J. Qu, F. Gao, S. Lv, L. Shi, C. He, J. Sun, In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl. Catal. B 162, 268–274 (2015)

    Article  CAS  Google Scholar 

  31. H. Tada, M. Akazawa, Y. Kubo, S. Ito, Enhancing effect of SiOx monolayer coverage of TiO2 on the photoinduced oxidation of rhodamine 6G in aqueous media. J. Phys. Chem. B 102, 6360–6366 (1998)

    Article  CAS  Google Scholar 

  32. Y. Fu, X. Sun, X. Wang, BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater. Chem. Phys. 131, 325–330 (2011)

    Article  CAS  Google Scholar 

  33. Akihiko Kudo, Yugo Miseki, Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  34. N. Wetchakun, S. Chaiwichain, B. Inceesungyorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. Acs Appl. Mater. Interfaces 4, 3718–3723 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundations of China (Grant nos. 51378217, U1360101), and Guangdong Natural Science Foundation (Grant no. S2012020010887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, S., Jian, Z. et al. Hydrothermal synthesis and characterization of In3+ modified BiVO4 nanoparticles with enhanced photocatalytic activity. Res Chem Intermed 42, 4147–4159 (2016). https://doi.org/10.1007/s11164-015-2265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2265-1

Keywords

Navigation