Skip to main content
Log in

Vacuum-activated Co2+ and Ti3+ co-modified TiO2 with stable and enhanced photocatalytic activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Vacuum-activated method was used to prepare Co2+ and Ti3+ co-modified TiO2 with the intention of enhancing visible light photo-catalytic performance, by expanding the visible light absorption and improving the quantum efficiency of the photo-catalytic reaction. The prepared co-modified catalysts were characterized by XRD, UV-DRS, XPS, EPR, etc. The characterization results indicate that the catalysts have a typical anatase crystalline form, and that some Co2+ are incorporated on the surface of TiO2, leading to the formation of Ti3+ and oxygen vacancies. The impurity levels induced by Co2+ and Ti3+ doping are the reason for the enhanced visible light absorption, and the synergistic effect of cobalt, Ti3+ and oxygen vacancies is responsible for the improvement of photo-catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. G. Begum, J. Manna, R.K. Rana, Chem. Eur. J. 18, 6847 (2012)

    Article  CAS  Google Scholar 

  2. F. Chen, H.Q. Liu, S. Bagwasi, X.X. Shen, J.L. Zhang, J. Photochem. Photobiol. 215, 76 (2010)

    Article  CAS  Google Scholar 

  3. J.Q. Chen, J.H. Huang, Chin. J. Chem. 32, 1624 (2011)

  4. P. Chen, T.-Y. Xiao, H.-H. Li, J.-J. Yang, Z. Wang, H.-B. Yao, S.-H. Yu, ACS Nano 6, 712 (2012)

    Article  CAS  Google Scholar 

  5. J. Choi, S.Y. Ryu, W. Balcerski, T.K. Lee, M.R. Hoffmann, J. Mater. Chem. 18, 2371 (2008)

    Article  CAS  Google Scholar 

  6. D.W. Hwang, H.G. Kim, J.S. Lee, J. Kim, W. Li, S.H. Oh, J. Phys. Chem. B Chem. B 109, 2093 (2004)

    Article  Google Scholar 

  7. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    Article  CAS  Google Scholar 

  8. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  CAS  Google Scholar 

  9. B. Qiu, M. Xing, J. Zhang, J. Am. Chem. Soc. 136, 5852 (2014)

    Article  CAS  Google Scholar 

  10. H. Liu, F. Shen, M. Xing, J. Zhang, M. Anpo, Catal. Lett. 144, 1494 (2014)

    Article  CAS  Google Scholar 

  11. M. Bowker, H. Bahruji, J. Kennedy, W. Jones, G. Hartley, C. Morton, Catal. Lett. 145, 214 (2015)

    Article  CAS  Google Scholar 

  12. L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Tian, Res. Chem. Intermed. (2014). doi:10.1007/s11164-014-1836-x

    Google Scholar 

  13. B. Castillo-Reyes, V. Ovando-Medina, O. González-Ortega, P. Alonso-Dávila, I. Juárez-Ramírez, H. Martínez-Gutiérrez, A. Márquez-Herrera, Res. Chem. Intermed. (2014). doi:10.1007/s11164-014-1886-0

    Google Scholar 

  14. M. Xing, J. Zhang, B. Qiu, B. Tian, M. Anpo, M. Che, Small 11, 1920 (2015)

  15. C. Cheng, A. Amini, C. Zhu, Z. Xu, H. Song, N. Wang, Sci. Rep. 4, 4181 (2014)

  16. E. Guo, L. Yin, L. Zhang, CrystEngComm 16, 3403 (2014)

    Article  CAS  Google Scholar 

  17. J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014)

    Article  CAS  Google Scholar 

  18. B. Qiu, C. Zhong, M. Xing, J. Zhang, RSC Adv. 5, 17802 (2015)

    Article  CAS  Google Scholar 

  19. B. Qiu, Y. Zhou, Y. Ma, X. Yang, W. Sheng, M. Xing, J. Zhang, Sci. Rep. 5, 8951 (2015)

  20. Y. Zhou, Y. Liu, P. Liu, W. Zhang, M. Xing, J. Zhang, Appl. Catal. B 170–171, 66 (2015)

  21. J. Araña, O. González Díaz, J.M. Doña Rodríguez, J.A. Herrera Melián, C. Garriga i Cabo, J. Pérez Peña, M. Carmen Hidalgo, J.A. Navío-Santos, J. Mol. Catal. A: Chem. 197, 157 (2003)

    Google Scholar 

  22. M. Xing, J. Zhang, F. Chen, J. Phys. Chem. C 113, 12848 (2009)

    Article  CAS  Google Scholar 

  23. M.Y. Xing, Y.M. Wu, J.L. Zhang, F. Chen, Nanoscale 2, 1233 (2010)

    Article  CAS  Google Scholar 

  24. M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, J. Colloid Interface Sci. 224, 202 (2000)

    Article  CAS  Google Scholar 

  25. S.D. Sharma, D. Singh, K.K. Saini, C. Kant, V. Sharma, S.C. Jain, C.P. Sharma, Appl. Catal. A 314, 40 (2006)

    Article  Google Scholar 

  26. M. Xing, W. Fang, M. Nasir, Y. Ma, J. Zhang, M. Anpo, J. Catal. 297, 236 (2013)

  27. M. Xing, X. Li, J. Zhang, Sci. Rep. 4, 5493 (2014)

  28. M. Xing, J. Zhang, F. Chen, B. Tian, Chem. Commun. 47, 4947 (2011)

  29. M.Y. Xing, W.Z. Fang, M. Nasir, Y.F. Ma, J.L. Zhang, M. Anpo, J. Catal. 297, 236 (2013)

  30. F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P. Feng, Angew. Chem. Int. Ed. 51, 6223 (2012)

    Article  CAS  Google Scholar 

  31. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 132, 11856 (2010)

    Article  CAS  Google Scholar 

  32. J.-G. Li, R. Büchel, M. Isobe, T. Mori, T. Ishigaki, J. Phys. Chem. C 113, 8009 (2009)

    Article  CAS  Google Scholar 

  33. Y. Cong, J.L. Zhang, F. Chen, M. Anpo, D.N. He, J. Phys. Chem. C 111, 10618 (2007)

    Article  CAS  Google Scholar 

  34. J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, J. Phys. Chem. B 110, 927 (2006)

    Article  CAS  Google Scholar 

  35. H.B. Liu, Y.M. Wu, J.L. Zhang, A.C.S. Appl, Mater. Interfaces 3, 1757 (2011)

    Article  CAS  Google Scholar 

  36. C. Di Valentin, G. Pacchioni, A. Selloni, J. Phys. Chem. C 113, 20543 (2009)

    Article  Google Scholar 

  37. A. Walsh, J.L.F. Da Silva, S.-H. Wei, Phys. Rev. Lett. 100, 256401 (2008)

    Article  Google Scholar 

  38. M. Anpo, M. Che, B. Fubini, E. Garrone, E. Giamello, M. Paganini, Top. Catal. 8, 189 (1999)

    Article  CAS  Google Scholar 

  39. J. Li, G. Lu, G. Wu, D. Mao, Y. Guo, Y. Wang, Y. Guo, Catal. Sci. Technol. 4, 1268 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Nature Science Foundation of China (21203062, 21377038, 21173077, 21237003, 21577036), the National Basic Research Program of China (973 Program, 2013CB632403), the Research Fund for the Doctoral Program of Higher Education (20120074130001), the Fundamental Research Funds for the Central Universities (22A201514021), and sponsored by the “Chenguang Program,” supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission (14CG30).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyang Xing or Jinlong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The Research described in this paper did not involve human participants and/or animals.

Additional information

Haibei Liu and Bin Shen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Shen, B., Xing, M. et al. Vacuum-activated Co2+ and Ti3+ co-modified TiO2 with stable and enhanced photocatalytic activity. Res Chem Intermed 42, 3459–3471 (2016). https://doi.org/10.1007/s11164-015-2225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2225-9

Keywords

Navigation