Skip to main content
Log in

Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A novel biosorbent, powdered Ficus auriculata leaves (FALP), has been used to remove hexavalent chromium from aqueous solutions by use of a batch technique. The biosorbent was characterized by surface area analysis, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The effects on adsorption of pH, initial Cr(VI) ion concentration, amount of FALP, agitation speed, and temperature were investigated. Equilibrium data from the biosorption study were evaluated by use of two and three-variable isotherm models. The equilibrium data were better fitted by use of a three-variable isotherm model. The kinetics of biosorption were examined by use of pseudo-first-order and pseudo-second-order kinetic models and an intraparticle diffusion model. The biosorption data were best fit by the pseudo-second-order kinetic model. Thermodynamic investigation revealed that biosorption of hexavalent chromium ions by FALP is spontaneous in nature, endothermic, and results in increased randomness. The study suggests that FALP could be used as a potential biosorbent for removal of hexavalent chromium from wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A T :

Temkin isotherm equilibrium binding constant (L/mg)

a RP :

Redlich–Peterson model constant (L/mg)

a :

Koble–Corrigan isotherm constant (mg/g) (L/mg)n

b :

Koble–Corrigan isotherm constant (L/mg)n

n :

Koble–Corrigan variable

b T :

Temkin isotherm constant (J/mol)

b L :

Langmuir isotherm constant (L/mg)

C i :

Initial Cr(VI) concentration (mg/L)

C e :

Cr(VI) concentration in solution at equilibrium (mg/L)

E :

Mean adsorption energy E (kJ/mol)

g :

Redlich–Peterson model exponent

k f :

Freundlich isotherm constant (mg/g)/(mg/L)1/n

K :

Coefficient related to the mean free energy of adsorption (mol2/kJ2)

K E :

Elovich equilibrium constant (L/mg)

K j :

Jovanovic isotherm constant (L/g)

K RP :

Redlich–Peterson model isotherm constant (L/g)

K s :

Sips equilibrium constant (L/mg)m

k 1 :

Pseudo-first-order rate constant(L/min)

k 2 :

Pseudo-second-order rate constant (g/mg min)

k id :

Intraparticle diffusion rate constant (mg/g min1/2)

k c :

Equilibrium constant

m :

Amount of biosorbent (g)

m s :

Sips model exponent

n F :

Adsorption intensity

Q 0 :

Monolayer coverage capacity(mg/g)

Q m :

Maximum adsorption capacity (mg/g) in D-R model

q m :

Elovich maximum adsorption capacity (mg/g)

q mj :

Maximum adsorption capacity in Jovanovic model (mg/g)

q ms :

Sips maximum biosorption capacity (mg/g)

q e :

Amount of Cr(VI) ions adsorbed per unit mass of biosorbent (mg/g)

R :

Gas constant (8.314 J/mol K)

R L :

Separation factor

V :

Volume of the solution (L)

Δ :

Gibbs free energy (kJ/mol)

Δ :

Enthalpy (kJ/mol)

Δ :

Entropy (J/mol K)

ε :

Polanyi potential

References

  1. A.I. Zouboulis, K.A. Kydros, K.A. Matis, Water Res. 29, 1755–1760 (1995)

    Article  CAS  Google Scholar 

  2. A.K. Shankera, C. Cervantes, H.L. Tavera, S. Avudainayagam, Environ. Int. 31, 739–753 (2005)

    Article  Google Scholar 

  3. M. Dinesh, U.C. Pittman Jr, J. Hazard. Mater. 137, 762–811 (2006)

    Article  Google Scholar 

  4. C. Namasivayam, M.V. Sureshkumar, Bioresour. Technol. 99, 2218–2225 (2008)

    Article  CAS  Google Scholar 

  5. EPA (1990) Environmental Protection Agency, Environmental Pollution Control Alternatives, EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati, US

  6. Indian Standard (1991) Drinking Water—Specification (first revision), IS 10500

  7. A. Baran, E. Bicak, S. Hamarat-Baysal, S. Onal, Bioresour. Technol. 98, 661–665 (2006)

    Article  Google Scholar 

  8. A. Witek Krowiak, R.G. Szafran, S. Modelski, Desalination 265, 126–134 (2011)

    Article  CAS  Google Scholar 

  9. R. Elangovan, P. Ligy, K. Chandraraj, J. Hazard. Mater. 152, 100–112 (2008)

    Article  CAS  Google Scholar 

  10. N. Selvaraju, S. Pushpavanam, Chem. Eng. J. 147, 130–138 (2009)

    Article  CAS  Google Scholar 

  11. R. Yavuz, I. Orbak, N. Karatepe, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 41, 1967–1980 (2006)

    Article  CAS  Google Scholar 

  12. F. Kargi, S. Cikla, J. Environ. Manag. 85, 883–890 (2007)

    Article  CAS  Google Scholar 

  13. M.M. Montazer-Rahmati, P. Rabbani, A. Abdolali, A.R. Keshtkar, J. Hazard. Mater. 185, 401–407 (2011)

    Article  CAS  Google Scholar 

  14. A. Witek Krowiak, Chem. Eng. J. 192, 13–20 (2012)

    Article  CAS  Google Scholar 

  15. S. Rangabhashiyam, E. Suganya, N. Selvaraju, A.V. Lity, World J. Microbiol. Biotechnol. 30, 1669–1689 (2014)

    Article  CAS  Google Scholar 

  16. S. Rangabhashiyam, N. Anu, N. Selvaraju, Res. J. Chem. Environ. 17, 112–123 (2013)

    CAS  Google Scholar 

  17. S. Rangabhashiyam, N. Selvaraju, J. Taiwan, Inst. Chem. Eng. (2014). doi:10.1016/j.jtice.2014.09.034

    Google Scholar 

  18. H.N. Bhatti, A.W. Nasir, M.A. Hanif, Desalination 253, 78–87 (2010)

    Article  CAS  Google Scholar 

  19. J. Monika, G. Vinod Kumar, K. Krishna, J. Environ. Manag. 91, 949–957 (2010)

    Article  Google Scholar 

  20. C. Rumi, N. Kenji, K. Hidetaka, O. Keisuke, W. Takanori, I. Katsutoshi, J. Hazard. Mater. 163, 245–250 (2009)

    Article  Google Scholar 

  21. R.A.K. Rao, F. Rehman, J. Hazard. Mater. 181, 405–412 (2010)

    Article  CAS  Google Scholar 

  22. T. Altun, E. Pehlivan, Food Chem. 132, 693–700 (2012)

    Article  CAS  Google Scholar 

  23. G. Blazquez, F. Hernainz, M. Calero, M.A. Martin-Lara, G. Tenorio, Chem. Eng. J. 148, 473–479 (2009)

    Article  CAS  Google Scholar 

  24. P. Donghee, Y. Yeoung-Sang, L. Dae Sung, P. Jong Moon, Desalination 271, 309–314 (2011)

    Article  Google Scholar 

  25. S. Rangabhashiyam, N. Anu, N. Selvaraju, Res. J. Chem. Environ. 18, 30–36 (2014)

    CAS  Google Scholar 

  26. D.H. Lataye, I.M. Mishra, I.D. Mall, Ind. Eng. Chem. Res. 45, 3934–3943 (2006)

    Article  CAS  Google Scholar 

  27. K. Mohanty, K.M. Jha, B.C. Meikap, M.N. Biswas, Chem. Eng. Sci. 60, 3049–3059 (2005)

    Article  CAS  Google Scholar 

  28. M.C. Ncibi, J. Hazard. Mater. 153, 207–212 (2008)

    Article  CAS  Google Scholar 

  29. S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, J. Environ. Chem. Eng. 2, 398–414 (2014)

    Article  CAS  Google Scholar 

  30. M. Prasad, H.Y. Xu, S. Saxena, J. Hazard. Mater. 154, 221–229 (2008)

    Article  CAS  Google Scholar 

  31. F. Renault, N. Morin-Crini, F. Gimbert, P.M. Badot, G. Crini, Bioresour. Technol. 99, 7573–7586 (2008)

    Article  CAS  Google Scholar 

  32. I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Colloids Surf. A Physicochem. Eng. Asp 264, 17–28 (2005)

    Article  CAS  Google Scholar 

  33. A. Kilislioglu, B. Bilgin, Appl. Radiat. Isot. 50, 155–160 (2003)

    Article  Google Scholar 

  34. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, J. Hazard. Mater. 141, 77–85 (2007)

    Article  CAS  Google Scholar 

  35. S.Y. Elovich, O.G. Larinov, Izv. Akad. Nauk. SSSR Otd. Khim.Nauk 2, 209–216 (1962)

    Google Scholar 

  36. M.A. Hossain, H.H. Ngo, W.S. Guo, T.V. Nguyen, Bioresour. Technol. 113, 97–101 (2012)

    Article  CAS  Google Scholar 

  37. A. Nunes, S.A. Franca, L.S. Olievera, Bioresour. Technol. 100, 1786–1792 (2009)

    Article  CAS  Google Scholar 

  38. M. Radika, K. Palanivelu, J. Hazard. Mater. 138, 116–124 (2006)

    Article  Google Scholar 

  39. Y.S. Ho, J.F. Porter, G. McKay, Water Air Soil Pollut. 141, 1–33 (2002)

    Article  CAS  Google Scholar 

  40. R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Chem. Eng. J. 145, 496–504 (2009)

    Article  CAS  Google Scholar 

  41. K. Meghna, M. Monoj Kumar, Chem. Eng. J. 218, 138–146 (2013)

    Article  Google Scholar 

  42. M.S. Mansour, M.E. Ossman, H.A. Farag, Desalination 272, 301–305 (2011)

    Article  CAS  Google Scholar 

  43. A.C.A. Lima, R.F. Nascimento, F.F. Sousa, M.F. Josue, C.O. Alcineia, Chem. Eng. J. 185–186, 274–284 (2012)

    Article  Google Scholar 

  44. S. Qaiser, A.R. Saleemi, M. Umar, J. Hazard. Mater. 166, 998–1005 (2009)

    Article  CAS  Google Scholar 

  45. X.S. Wang, Y.P. Tang, S.R. Tao, Chem. Eng. J. 148, 217–225 (2009)

    Article  CAS  Google Scholar 

  46. N. Ertugay, Y.K. Bayhan, J. Hazard. Mater. 154, 432–439 (2008)

    Article  CAS  Google Scholar 

  47. S. Biswajit, D. Sudip Kumar, Colloids Surf. B Biointerfaces 84, 221–232 (2011)

    Article  Google Scholar 

  48. M. Jain, V.K. Garg, K. Kadirvelu, J. Environ. Manag. 91, 949–957 (2010)

    Article  CAS  Google Scholar 

  49. V. Venugopal, K. Mohanty, Chem. Eng. J. 174, 151–158 (2011)

    Article  CAS  Google Scholar 

  50. L. Huifen, L. Yanbing, G. Wumeng, C. Jiali, X. Lin, G. Junkang, W. Gehong, J. Hazard. Mater. 179, 151–159 (2010)

    Article  Google Scholar 

  51. K. Srividya, K. Mohanty, Chem. Eng. J. 155, 666–673 (2009)

    Article  CAS  Google Scholar 

  52. S. Dhara, S.V. Padma, Environ. Sci. Pollut. Res. 19, 2321–2328 (2012)

    Article  Google Scholar 

  53. V.V.A. Gannavarapu, P.P. Bhagavatula, C.B. Nalluri, V. Paladugu, Korean J. Chem. Eng. 29, 64–71 (2012)

    Article  Google Scholar 

  54. I.C. Aloma, I. Rodriguez, M. Calero, G. Blazquez, Biosorption of Cr6+ from aqueous solution by sugarcane bagasse. Desalin. Water Treat. 52, 5912–5922 (2014)

    Article  CAS  Google Scholar 

  55. G. Gebrehawaria, A. Hussen, V.M. Rao, Int. J. Environ. Sci. Technol. (2014). doi:10.1007/s13762-014-0530-2

    Google Scholar 

  56. M.A. Abdullah, A.G.D. Prasad, Int. J. Chem. Eng. Res. 1, 51–62 (2009)

    Google Scholar 

  57. S. Saraswat, J.P.N. Rai, Miner. Eng. 94, 203–206 (2010)

    CAS  Google Scholar 

  58. P. Venkateswaralu, M.V. Ratnan, D.S. Rao, M.V. Rao, Int. J. Phys. Sci. 2, 188–195 (2007)

    Google Scholar 

  59. B. Singha, S.K. Das, Colloids Surf. B. Biointerfaces 84, 221–232 (2011)

    Article  CAS  Google Scholar 

  60. D. Huseyin, K. Yakup, Ind. Eng. Chem. 19, 190–196 (2013)

    Article  Google Scholar 

  61. R. Elangovan, L. Philip, K. Chandraraj, Chem. Eng. J. 141, 99–111 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by The Department of Science and Technology, India (grant no. SB/FTP/ETA-356/2012) is gratefully acknowledged. The authors wish to thank the editors for their valuable comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangabhashiyam, S., Nakkeeran, E., Anu, N. et al. Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions. Res Chem Intermed 41, 8405–8424 (2015). https://doi.org/10.1007/s11164-014-1900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1900-6

Keywords

Navigation