Skip to main content
Log in

Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pitch-based carbon fibers (PCFs) were fabricated using a melt-electrospinning method and used as a gas sensor electrode for nitric oxide (NO). The PCFs were modified through different heat-treatment temperatures (1,000, 1,650, and 2,300 °C) and activation conditions (2, 4, and 6 M KOH solutions) to investigate the effect of these processes on the structure and surface functionalities of the resultant fiber samples. Field emission scanning electron microscopy, elemental analyzer, Raman spectroscopy, and pore analysis techniques were then employed to characterize the prepared samples. As a result of these modifications, the porosity and electrical conductivity of the prepared PCFs increased, which resulted in enlarged gas adsorption sites and an improved electron transfer. The improved porosity of the PCFs was attributed to the chemical activation process, whereas the enhanced electrical conductivity was also attributed to higher heat-treatment temperature. The sensing ability of the PCFs for NO-gas was thus significantly improved based on the effects of the chemical activation and higher heat-treatment temperatures. The performance of these PCFs as an NO-gas sensor system suggests promising application of carbon fibers as a novel and highly efficient NO-gas sensing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Menil, V. Coillard, C. Lucat, Sens. Actuators B-Chem. 67, 1 (2000)

    CAS  Google Scholar 

  2. M.I. Kim, Y.S. Lee, Appl. Chem. Eng. 25, 193 (2014)

  3. L. Chen, S.C. Tsang, Sens. Actuators B-Chem. 89, 68 (2003)

    CAS  Google Scholar 

  4. G. Sberveglieri, P. Benussi, G. Coccoli, S. Groppelli, P. Nelli, Thin Solid Films 186, 349 (1990)

    CAS  Google Scholar 

  5. C.Y. Liu, C.F. Chen, J.P. Leu, C.C. Lu, K.H. Liao, Sens. Actuators B-Chem. 143, 12 (2009)

    Google Scholar 

  6. Y.S. Kim, S.H. Cho, S.H. Lee, Y.S. Lee, Carbon Lett. 13, 254 (2012)

    Google Scholar 

  7. W.K. Jang, J. Yun, H.I. Kim, Y.S. Lee, Carbon Lett. 13, 88 (2012)

    Google Scholar 

  8. J.S. Moon, Carbon Lett. 13, 17 (2012)

    Google Scholar 

  9. H.K. Choi, H.Y. Jeong, D.S. Lee, C.G. Choi, S.Y. Choi, Carbon Lett. 14, 186 (2014)

  10. C.A. Papadopoulos, D.S. Vlachos, J.N. Avaritsiotis, Sens. Actuators B-Chem. 32, 61 (1996)

    CAS  Google Scholar 

  11. K. Kolev, C. Popov, T. Petkova, P. Petkov, I.N. Mihailescu, J.P. Reithmaier, Sens. Actuators B-Chem. 143, 395 (2009)

    Google Scholar 

  12. S.K. Lee, J.S. Im, S.C. Kang, Sh Lee, Y.S. Lee, J. Porous Mater. 19, 989 (2012)

    CAS  Google Scholar 

  13. P. Bondavalli, P. Legagneux, D. Pribat, Sens. Actuators B-Chem. 140, 304 (2009)

    CAS  Google Scholar 

  14. E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, Carbon 43, 786 (2005)

    Google Scholar 

  15. Y.S. Lee, Y.V. Basov, D.D. Edie, L.K. Reid, S.R. Newcombe, S.K. Ryu, Carbon 41, 2573 (2003)

    CAS  Google Scholar 

  16. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    CAS  Google Scholar 

  17. H. Lee, I.Y. Kim, S.S. Han, B.S. Bae, M.K. Choi, I.S. Yang, J. Appl. Phys. 90, 813 (2001)

    CAS  Google Scholar 

  18. J.H. Kim, S.H. Lee, Y.S. Lee, Appl. Chem. Eng. 24, 402 (2013)

  19. H.M. Lee, K.H. An, B.J. Kim, Carbon Lett. 15, 146 (2014)

  20. M.S.A. Rahaman, A.F. Ismail, A. Mustafa, Polym. Degrad. Stabil. 92, 1421 (2007)

    CAS  Google Scholar 

  21. S. Dalton, F. Heatley, M.B. Peter, Polymer 40, 5531 (1999)

    CAS  Google Scholar 

  22. D.D. Edie, Carbon 36, 345 (1998)

    CAS  Google Scholar 

  23. T.H. Ko, J. Appl. Polym. Sci. 59, 577 (1996)

    CAS  Google Scholar 

  24. F. Tuinstra, J.L. Koenig, J Chem Phys. 53, 1126 (1970)

    CAS  Google Scholar 

  25. M.A. Lillo-Rodenas, J. Juan-Juan, D. Cazorla-Amoros, A. Linares-Solano, Carbon 42, 1371 (2004)

    CAS  Google Scholar 

  26. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, PureAppl. Chem. 57, 603 (1985)

    CAS  Google Scholar 

  27. J.S. Im, S.J. Park, Y.S. Lee, Mater. Res. Bull. 44, 1871 (2009)

    CAS  Google Scholar 

  28. S. Radhakrishnan, S. Paul, Sens. Actuators B-Chem. 125, 60 (2007)

    CAS  Google Scholar 

  29. D.R. Kauffman, A. Star, Angew ChemInt Ed. 47, 6550 (2008)

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Korea Institute of Science and Technology Institutional program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seak Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, S.H., Park, SJ. et al. Preparation and gas-sensing properties of pitch-based carbon fiber prepared using a melt-electrospinning method. Res Chem Intermed 40, 2571–2581 (2014). https://doi.org/10.1007/s11164-014-1670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1670-1

Keywords

Navigation