Skip to main content
Log in

Effect of impurities on the hydrolysis of low-concentration titanyl sulfate solutions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Hydrolysis of titanyl sulfate solutions with TiO2 concentrations of 140–180 g/L was investigated. The effects of the concentrations of impurities present in ilmenite, for example iron(II), magnesium, and aluminium, on hydrolytic conversion, and on the morphology and composition of the hydrolysates, were examined. The results showed that with increasing impurity concentrations, the conversion was gradually decreased, but still maintained at ~95 %. The concentrations of these impurity ions substantially affected the morphology of the hydrolysates. The higher the concentrations of the impurities were, the more irregular and non-uniform were the hydrolysate particles. When iron-to-titanium dioxide (Fe/TiO2) mass ratios in the precipitate liquors were >0.50, the hydrolysates became very compact and difficult to filter and disperse. It was found that the hydrolysate crystallites first formed primary particles which had a very similar particle sizes of 30–50 nm, despite different concentrations of titanium and the impurity ions used. The primary particles further aggregated and formed secondary aggregates probably via sulfate bridge bonds. The concentrations of the impurities substantially affected the amounts of hydrated SO3 adsorbed by the hydrolysates, which increased with increasing impurity concentrations, resulting in increased agglomeration of the primary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Barksdale, Chemistry and Technology, 2nd edn. (Springer, New York, 1966), p. 414

  2. A.W. Hixon, W.W. Plechner, Ind. Eng. Chem. 3, 25 (1933)

    Google Scholar 

  3. B. Xiang, N.B. Li, S.T. Zhang, B.R. Hou, Southwest Normal University 2, 29 (2004)

  4. L. Hao, W.Q. Ji, X.G. Chen, Y.H. Wei, Inorganic. Chem. Ind. 2, 38 (2006)

    Google Scholar 

  5. C.X. Tian et al., Trans. Nonferrous Met. Sco. China 19, S829–S833 (2009)

    Article  CAS  Google Scholar 

  6. J.P. Jalava, Ind. Eng. Chem. Res. 31, 608–611 (1992)

    Article  CAS  Google Scholar 

  7. W. Hixson, C. Ralphe, Ind. Eng. Chem. 7, 37 (1945)

    Google Scholar 

  8. B.U. Grzmil, D. Grela, B. Kic, M. Podsiadly, Pol. J. Chem. Technol. 1, 62 (2008)

    Google Scholar 

  9. X. Yang, T.Y. Xue, L.N. Wang, T. Qi, Wet Metallurgy 4, 29 (2010)

    CAS  Google Scholar 

  10. B.U. Grzmil, D. Grela, B. Kic, Chem. Pap. 1, 62 (2008)

    Google Scholar 

  11. V.D. Bavykin, P. Vera, V. Alerxander, V.N. Parmon, Res. Chem. Intermed 3–5, 33 (2007)

    Google Scholar 

  12. B.U. Grzmil, D. Grela, B. Kic, Pol. J. Chem. Tech. 3, 11 (2009)

    Google Scholar 

  13. G.R. Eric, D.S. Alan, E.G. Philip, N. Sarah, in United States Patent No. US 7,326,390 B2 (2008)

  14. W. Twist, in British Patent, No. 1135787 (1966)

  15. K.S. Kamala, C.A. Thomas, M. Devabrata, A. Archana, Waste Manage. Res. 24, 74–79 (2006)

    Article  Google Scholar 

  16. S.L. Zhang, X.Z. Cheng, H.F. Hu, Iron Steel Vanadium Titanium 1, 24 (2003)

    Google Scholar 

  17. X.L. Hao, L. Li, B. Liang, C. Li, Hydrometallurgy 113, 185–191 (2012)

    Article  Google Scholar 

  18. A. Deep, P. Malik, B. Gupta, Sep. Sci. Technol. 4, 36 (2001)

    Google Scholar 

  19. E. Narita, H. Takeuchi, H. Ichikawa, T. Odagawa, T. Okabe, Bull. Chem. Soc. Jpn. 56, 1832–1836 (1983)

    Article  CAS  Google Scholar 

  20. K.C. Sole, Hydrometallurgy 3, 51 (1999)

    Google Scholar 

  21. H. Song, B. Liang, L. Li, P. Wu, C. Li, Int. J. Min. Met. Mater. 19(7), 642–650 (2012)

  22. M.L. Reynolds, J. Chem. Soc. 4, 2993–2995 (1965)

  23. S. Sekhar et al., Cryst. Growth Des. 2, 1 (2001)

    Google Scholar 

  24. E. Santacesaria, M. Tonello, G. Storti, R.C. Pace, S.J. Carra, Colloid. Interface Sci. 1, 111 (1986)

    Google Scholar 

  25. M.P. Finnegan, H.Z. Zhang, J.F. Banfield, J. Phys. Chem. C 5, 111 (2007)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (no. 21236004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Liang, B., Lü, L. et al. Effect of impurities on the hydrolysis of low-concentration titanyl sulfate solutions. Res Chem Intermed 41, 5423–5438 (2015). https://doi.org/10.1007/s11164-014-1643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1643-4

Keywords

Navigation