Skip to main content

Advertisement

Log in

The functional roles of surgeonfishes on coral reefs: past, present and future

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Surgeonfishes have had a long evolutionary history that has been closely linked with coral reef ecosystems. Today they are a key component of reef fish assemblages, playing a pivotal role in a variety of ecosystem functions. However, coral reefs are at the forefront of environmental change with a suite of stressors pushing these ecosystems towards alternative configurations. The role of surgeonfishes in these ecosystems may be changing and our understanding of these fishes must now be considered within a context of change. To explore these issues, we review the literature on surgeonfishes and examine (1) how their functional roles on coral reefs have evolved over the past 50 million years, (2) the key functions performed by surgeonfishes on present-day coral reefs, and (3) predict how the nature and importance of these roles may change in the near future (~ 30 years). Specifically, we draw on recently clarified functional frameworks to categorise surgeonfishes into six broad functional groups (browsers, brushers, croppers, concealed croppers, sediment-suckers, water-column feeders) using morphological and behavioural traits. Subsequently, we explore how these functional groups make critical contributions to the ecosystem processes of macroalgal removal, algal turf removal, detritus removal, sediment dynamics, plankton harvesting and cross-habitat trophic linkages. Furthermore, using this framework we consider how environmental factors, anthropogenic stressors, as well as other behavioural and morphological traits can shape the delivery of key functions by surgeonfishes. Finally, we highlight how surgeonfishes may play increasingly important roles in supporting key functions and services on current and future, highly-altered, coral reefs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The sources of data used in this review are provided in the manuscript and its supplemental material. In addition, data is available upon request from the corresponding author.

Code availability

Code is available upon request to the corresponding author.

References

  • Abesamis RA, Russ GR (2005) Density-dependent spillover from a marine reserve: long term evidence. Ecol Appl 15:1798–1812

    Article  Google Scholar 

  • Adam TC, Burkepile DE, Ruttenberg BI, Paddack MJ (2015) Herbivory and the resilience of Caribbean coral reefs: knowledge gaps and implications for management. Mar Ecol Prog Ser 520:1–20

    Article  Google Scholar 

  • Adey WH, Steneck RS (1985) Highly productive eastern Caribbean reefs: synergistic effects of biological, chemical, physical, and geological factors. NOAA Undersea Research Program, Rockville

  • Aguilar-Perera A, Appeldoorn RS (2008) Spatial distribution of marine fishes along a cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs off southwestern Puerto Rico. Estuar Coast Shelf Sci 76:378–394

    Article  Google Scholar 

  • Alevizon WS (1976) Mixed schooling and its possible significance in a tropical Western Atlantic parrotfish and surgeonfish. Copeia 1976:796–798

    Article  Google Scholar 

  • Allgeier JE, Burkepile DE, Layman CA (2017) Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob Chang Biol 23:2166–2178

    Article  PubMed  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B Biol Sci 276:3019–3025

    Article  Google Scholar 

  • Alwany M, Thaler E, Stachowitsch M (2005) Territorial behaviour of Acanthurus sohal and Plectroglyphidodon leucozona on the fringing Egyptian Red Sea reefs. Environ Biol Fishes 72:321–334

    Article  Google Scholar 

  • Andrews AH, Demartini EE, Eble JA, Taylor BM, Lou DC, Humphreys RL (2016) Age and growth of bluespine unicornfish (Naso unicornis): a half-century life-span for a keystone browser, with a novel approach to bomb radiocarbon dating in the Hawaiian Islands. Can J Fish Aquat Sci 73:1575–1586

    Article  CAS  Google Scholar 

  • Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature 362:239–241

    Article  CAS  PubMed  Google Scholar 

  • Arias-González JE, Fung T, Seymour RM, Garza-Pérez JR, Acosta-González G, Bozec YM, Johnson CR (2017) A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS ONE 12:e0174855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold SN, Steneck RS, Mumby PJ (2010) Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar Ecol Prog Ser 414:91–105

    Article  Google Scholar 

  • Atkinson MJ, Grigg RW (1984) Model of a coral reef ecosystem: II. Gross and net benthic primary production at french frigate shoals. Hawaii Coral Reefs 3:13–22

    Article  CAS  Google Scholar 

  • Aued AW, Smith F, Quimbayo JP, Candido DV, Longo GO, Ferreira CEL, Witman JD, Floeter SR, Segal B (2018) Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE 13:e0198452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TG, Robertson DR (1982) Organic and caloric levels of fish feces relative to its consumption by coprophagous reef fishes. Mar Biol 69:45–50

    Article  Google Scholar 

  • Bainbridge Z, Lewis S, Bartley R, Fabricius K, Collier C, Waterhouse J, Garzon-Garcia A, Robson B, Burton J, Wenger A, Brodie J (2018) Fine sediment and particulate organic matter: a review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar Pollut Bull 135:1205–1220

    Article  CAS  PubMed  Google Scholar 

  • Barlow GW (1974a) Extraspecific imposition of social grouping among surgeonfishes (Pisces: Acanthuridae). J Zool 174:333–340

    Article  Google Scholar 

  • Barlow GW (1974b) Contrasts in social behavior between Central American cichlid fishes and coral reef surgeon fishes. Am Zool 14:9–34

    Article  Google Scholar 

  • Barlow J, França F, Gardner TA, Hicks CC, Lennox GD, Berenguer E, Castello L, Economo EP, Ferreira J, Guénard B, Gontijo Leal C, Isaac V, Lees AC, Parr CL, Wilson SK, Young PJ, Graham NAJ (2018) The future of hyperdiverse tropical ecosystems. Nature 559:517–526

    Article  CAS  PubMed  Google Scholar 

  • Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Maina J, Allen AP (2014) Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol Lett 17:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Basford AJ, Feary DA, Truong G, Steinberg PD, Marzinelli EM, Vergés A (2016) Feeding habits of range-shifting herbivores: tropical surgeonfishes in a temperate environment. Mar Freshw Res 67:75–83

    Article  Google Scholar 

  • Bates AE, Cooke RSC, Duncan MI, Edgar GJ, Bruno JF, Benedetti-Cecchi L, Côté IM, Lefcheck JS, Costello MJ, Barrett N, Bird TJ, Fenberg PB, Stuart-Smith RD (2019) Climate resilience in marine protected areas and the ‘Protection Paradox.’ Biol Conserv 236:305–314

    Article  Google Scholar 

  • Bauman AG, Seah JCL, Januchowski-Hartley FA, Hoey AS, Fong J, Todd PA (2019) Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol Lett 15:20190409

    Article  PubMed  PubMed Central  Google Scholar 

  • Bejarano S, Jouffray J-B, Chollett I, Allen R, Roff G, Marshell A, Steneck R, Ferse S, Mumby PJ (2017) The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Funct Ecol 6:1312–1324

    Article  Google Scholar 

  • Bellwood DR (1995a) Carbonate transport and within reef patterns of bioerosion and sediment release by parrotfishes (family Scaridae) on the Great Barrier Reef. Mar Ecol Prog Ser 117:127–136

    Article  Google Scholar 

  • Bellwood DR (1995b) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419–429

    Article  Google Scholar 

  • Bellwood DR (1996a) The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage. Coral Reefs 15:11–19

    Article  Google Scholar 

  • Bellwood DR (1996b) Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia. Mar Biol 125:795–800

    Article  Google Scholar 

  • Bellwood DR (1988) Ontogenetic changes in the diet of early post-settlement Scarus species (Pisces: Scaridae). J Fish Biol 33:213–219

    Article  Google Scholar 

  • Bellwood DR (2003) Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:71–83

    Article  Google Scholar 

  • Bellwood DR, Baird AH, Depczynski M, González-Cabello A, Hoey AS, Lefèvre CD, Tanner JK (2012a) Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170:567–573

    Article  PubMed  Google Scholar 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fishes 28:189–214

    Article  Google Scholar 

  • Bellwood DR, Fulton CJ (2008) Sediment-mediated suppression of herbivory on coral reefs: Decreasing resilience to rising sea-levels and climate change? Limnol Oceanogr 53:2695–2701

    Article  Google Scholar 

  • Bellwood DR, Goatley CHR, Bellwood O (2017) The evolution of fishes and corals on reefs: form, function and interdependence. Biol Rev 92:878–901

    Article  PubMed  Google Scholar 

  • Bellwood DR, Goatley CHR, Brandl SJ, Bellwood O (2014a) Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc R Soc B Biol Sci 281:20133046

    Article  CAS  Google Scholar 

  • Bellwood DR, Hemingson CR, Tebbett SB (2020) Subconscious biases in coral reef fish studies. Bioscience 70:621–627

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Ackerman JL, Depczynski M (2006a) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Chang Biol 12:1587–1594

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Bellwood O, Goatley CHR (2014b) Evolution of long-toothed fishes and the changing nature of fish–benthos interactions on coral reefs. Nat Commun 5:3144

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function of coral reefs. Ecol Lett 6:281–285

    Article  Google Scholar 

  • Bellwood DR, Hoey AS, Hughes TP (2012b) Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc R Soc B Biol Sci 279:1621–1629

    Article  Google Scholar 

  • Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292:1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Hughes TP, Hoey AS (2006b) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Pratchett MS, Morrison TH, Gurney GG, Hughes TP, Álvarez-romero JG, Day JC, Grantham R, Grech A, Hoey AS, Jones GP, Pandolfi JM, Tebbett SB, Techera E, Weeks R, Cumming GS (2019a) Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol Conserv 236:604–615

    Article  Google Scholar 

  • Bellwood DR, Schultz O, Siqueira AC, Cowman PF (2019b) A review of the fossil record of the Labridae. Ann Des Naturhistorischen Museums Wien Ser A 121:125–193

    Google Scholar 

  • Bellwood DR, Streit RP, Brandl SJ, Tebbett SB (2019c) The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct Ecol 33:948–961

    Article  Google Scholar 

  • Bellwood DR, Tebbett SB, Bellwood O, Mihalitsis M, Morais RA, Streit RP, Fulton CJ (2018) The role of the reef flat in coral reef trophodynamics: past, present, and future. Ecol Evol 8:4108–4119

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellwood DR, Wainwright PC (2002) The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. Academic Press, San Diego, CA, pp 5–32

    Chapter  Google Scholar 

  • Bellwood DR, Wainwright PC, Fulton CJ, Hoey AS (2002) Assembly rules and functional groups at global biogeographic scales. Funct Ecol 16:557–562

    Article  Google Scholar 

  • Bender D, Champ CM, Kline D, Diaz-Pulido G, Dove S (2015) Effects of “reduced” and “business-as-usual” CO2 emission scenarios on the algal territories of the damselfish Pomacentrus wardi (Pomacentridae). PLoS ONE 10:e0131442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender MG, Machado GR, Silva PJ de A, Floeter SR, Monteiro-Netto C, Luiz OJ, Ferreira CEL (2014) Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9:e110332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett S, Wernberg T, Harvey ES, Santana-Garcon J, Saunders BJ (2015) Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol Lett 18:714–723

    Article  PubMed  Google Scholar 

  • Beverton RJH, Holt SJ (1959) A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In: Wolstenholme G, O’Connor M (eds) Ciba Foundation symposium – The lifespan of animals (Colloquia on ageing). Churchill Press, London, pp 142–180

    Google Scholar 

  • Bierwagen SL, Emslie MJ, Heupel MR, Chin A, Simpfendorfer CA (2018) Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Mar Biol 165:144

    Article  Google Scholar 

  • Bierwagen SL, Price DK, Pack AA, Meyer CG (2017) Bluespine unicornfish (Naso unicornis) are both natural control agents and mobile vectors for invasive algae in a Hawaiian Marine Reserve. Mar Biol 164:25

    Article  Google Scholar 

  • Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414

    Article  CAS  PubMed  Google Scholar 

  • Blanchette A, Ely T, Zeko A, Sura SA, Turba R, Fong P (2019) Damselfish Stegastes nigricans increase algal growth within their territories on shallow coral reefs via enhanced nutrient supplies. J Exp Mar Bio Ecol 513:21–26

    Article  Google Scholar 

  • Blot J, Tyler JC (1990) New genera and species of fossil surgeonfishes and their relatives (Acanthuroidei, Teleostei) from the Eocene of Monte Bolca, Italy, with application of the Blot formula to both fossil and recent forms. Stud e Ric Sui Giacimenti Terziari Di Bolca 6:13–92

    Google Scholar 

  • Bonaldo RM, Bellwood DR (2009) Dynamics of parrotfish grazing scars. Mar Biol 156:771–777

    Article  Google Scholar 

  • Bonaldo RM, Hay ME (2014) Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. PLoS ONE 9:e85786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldo RM, Hoey AS, Bellwood DR (2014) The ecosystem roles of parrotfishes on tropical reefs. Oceanogr Mar Biol an Annu Rev 52:81–132

    Google Scholar 

  • Bonaldo RM, Pires MM, Guimarã PR, Hoey AS, Hay ME (2017) Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12:e0170638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl SJ, Bellwood DR (2013) Pair formation in the herbivorous rabbitfish Siganus doliatus. J Fish Biol 82:2031–2044

    Article  CAS  PubMed  Google Scholar 

  • Brandl SJ, Bellwood DR (2014a) Individual-based analyses reveal limited functional overlap in a coral reef fish community. J Anim Ecol 83:661–670

    Article  PubMed  Google Scholar 

  • Brandl SJ, Bellwood DR (2014b) Pair formation in coral reef fishes: an ecological perspective. Oceanogr Mar Biol an Annu Rev 52:1–80

    Google Scholar 

  • Brandl SJ, Bellwood DR (2015) Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci Rep 5:14556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl SJ, Bellwood DR (2016) Microtopographic refuges shape consumer-producer dynamics by mediating consumer functional diversity. Oecologia 182:203–217

    Article  PubMed  Google Scholar 

  • Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L (2018) The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev 93:1846–1873

    Article  PubMed  Google Scholar 

  • Brandl SJ, Hoey AS, Bellwood DR (2014) Micro-topography mediates interactions between corals, algae, and herbivorous fishes on coral reefs. Coral Reefs 33:421–430

    Article  Google Scholar 

  • Brandl SJ, Robbins WD, Bellwood DR (2015) Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use. Proc R Soc B Biol Sci 282:20151147

    Article  CAS  Google Scholar 

  • Brandl SJ, Tornabene L, Goatley CHR, Casey JM, Morais RA, Côté IM, Baldwin CC, Parravicini V, Schiettekatte NMD, Bellwood DR (2019) Demographic dynamics of the smallest marine vertebrates fuel coral-reef ecosystem functioning. Science 364:1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Brawley SH, Adey WH (1977) Territorial behavior of threespot damselfish (Eupomacentrus planifrons) increases reef algal biomass and productivity. Environ Biol Fishes 2:45–51

    Article  Google Scholar 

  • Brown KT, Bender-Champ D, Kubicek A, van der Zande R, Achlatis M, Hoegh-Guldberg O, Dove SG (2018) The dynamics of coral-algal interactions in space and time on the southern Great Barrier Reef. Front Mar Sci 5:181

    Article  Google Scholar 

  • Browne NK, Smithers SG, Perry CT (2013) Carbonate and terrigenous sediment budgets for two inshore turbid reefs on the central Great Barrier Reef. Mar Geol 346:101–123

    Article  CAS  Google Scholar 

  • Bruggemann JH, van Kessel AM, van Rooij JM, Breeman AM (1996) Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use. Mar Ecol Prog Ser 134:59–71

    Article  Google Scholar 

  • Bruno JF, Côté IM, Toth LT (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann Rev Mar Sci 11:307–334

    Article  PubMed  Google Scholar 

  • Bruno JF, Precht WF, Vroom PS, Aronson RB (2014) Coral reef baselines: How much macroalgae is natural? Mar Pollut Bull 80:24–29

    Article  CAS  PubMed  Google Scholar 

  • Bruno JF, Sweatman H, Precht WF, Selig ER, Schutte VGW (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–1484

    Article  PubMed  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, DC

    Google Scholar 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci USA 105:16201–16206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkepile DE, Hay ME (2009) Nutrient versus herbivore control of macroalgal community development and coral growth on a Caribbean reef. Mar Ecol Prog Ser 389:71–84

    Article  Google Scholar 

  • Calder WA (1984) Size, function and life history. Harvard University Press, Cambridge

    Google Scholar 

  • Campbell SJ, Darling ES, Pardede S, Ahmadia G, Mangubhai S, Amkieltiela E, Maire E (2020) Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv Lett 13:e12698

    Article  Google Scholar 

  • Capitani L, de Araujo JN, Vieira EA, Angelini R, Longo GO (2021a) Ocean warming will reduce standing biomass in a tropical Western Atlantic reef ecosystem. Ecosystems. https://doi.org/10.1007/s10021-021-00691-z

    Article  Google Scholar 

  • Capitani L, Roos N, Longo GO, Angelini R, Schenone L (2021b) Resource-to-consumer ratio determines the functional response of an herbivorous fish in a field experiment. Oikos. https://doi.org/10.1111/oik.08784

    Article  Google Scholar 

  • Carpenter RC (1985) Relationships between primary production and irradiance in coral reef algal communities. Limnol Oceanogr 30:784–793

    Article  Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–364

    Article  Google Scholar 

  • Carpenter RC, Williams SL (1993) Effects of algal turf canopy height and microscale substratum topography on profiles of flow speed in a coral forereef environment. Limnol Oceanogr 38:687–694

    Article  Google Scholar 

  • Catano LB, Rojas MC, Malossi RJ, Peters JR, Heithaus MR, Fourqurean JW, Burkepile DE (2016) Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour. J Anim Ecol 85:146–156

    Article  PubMed  Google Scholar 

  • Ceccarelli DM, Jones GP, McCook LJ (2005) Effects of territorial damselfish on an algal-dominated coastal coral reef. Coral Reefs 24:606–620

    Article  Google Scholar 

  • Cheal AJ, Emslie M, MacNeil MA, Miller I, Sweatman H (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol Appl 23:174–188

    Article  PubMed  Google Scholar 

  • Cheal AJ, Emslie M, Miller I, Sweatman H (2012) The distribution of herbivorous fishes on the Great Barrier Reef. Mar Biol 159:1143–1154

    Article  Google Scholar 

  • Cheal AJ, MacNeil MA, Emslie MJ, Sweatman H (2017) The threat to coral reefs from more intense cyclones under climate change. Glob Chang Biol 23:1511–1524

    Article  PubMed  Google Scholar 

  • Choat JH (1991) The biology of herbivorous fishes on coral reefs. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 120–155

    Chapter  Google Scholar 

  • Choat JH, Axe LM (1996) Growth and longevity in acanthurid fishes; an analysis of otolith increments. Mar Ecol Prog Ser 134:15–26

    Article  Google Scholar 

  • Choat JH, Bellwood DR (1985) Interactions amongst herbivorous fishes on a coral reef: influence of spatial variation. Mar Biol 89:221–234

    Article  Google Scholar 

  • Choat JH, Clements KD (1998) Vertebrate herbivores in marine and terresetrial environments: a nutritional ecology perspective. Annu Rev Ecol Syst 29:375–403

    Article  Google Scholar 

  • Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs 1: dietary analyses. Mar Biol 140:613–623

    Article  CAS  Google Scholar 

  • Choat JH, Robbins WD, Clements KD (2004) The trophic status of herbivorous fishes on coral reefs ll: food processing modes and trophodynamics. Mar Biol 145:445–454

    Article  Google Scholar 

  • Choat JH, Robertson DR (2002) Age-Based Studies on Coral Reef Fishes. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 57–80

    Chapter  Google Scholar 

  • Chong-Seng KM, Nash KL, Bellwood DR, Graham NAJ (2014) Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33:409–419

    Article  Google Scholar 

  • Christensen JD, Jeffrey CFG, Caldow C, Monaco ME, Kendall MS, Appeldoorn RS (2003) Cross-Shelf Habitat Utilization patterns of reef fishes in Southwetern Puerto Rico. Gulf Caribb Res 14:9–27

    Article  Google Scholar 

  • Chung AE, Wedding LM, Green AL, Friedlander AM, Goldberg G, Meadows A, Hixon MA (2019) Building Coral reef resilience through spatial herbivore management. Front Mar Sci 6:98

    Article  Google Scholar 

  • Cissell EC, Manning JC, McCoy SJ (2019) Consumption of benthic cyanobacterial mats on a Caribbean coral reef. Sci Rep 9:12693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausing RJ, Annunziata C, Baker G, Lee C, Bittick SJ, Fong P (2014) Effects of sediment depth on algal turf height are mediated by interactions with fish herbivory on a fringing reef. Mar Ecol Prog Ser 517:121–129

    Article  Google Scholar 

  • Clements CS, Rasher DB, Hoey AS, Bonito VE, Hay ME (2018) Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. Mar Ecol Prog Ser 586:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements KD (1991) Gut microorganisms of surgeonfishes (family Acanthuridae). James Cook University, Townsville

    Google Scholar 

  • Clements KD, Choat JH (1995) Fermentation in tropical marine herbivorous fishes. Physiol Zool 68:355–378

    Article  CAS  Google Scholar 

  • Clements KD, Choat JH (2018) Nutritional Ecology of Parrotfishes (Scarinae, Labridae). In: Hoey AS, Bonaldo RM (eds) Biology of Parrotfishes. CRC Press, Boca Raton, pp 42–68

    Chapter  Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet AD, Choat JH (2017) Integrating ecological roles and trophic resources on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc 120:729–751

    Google Scholar 

  • Clements KD, Gray RD, Choat JH (2003) Rapid evolutionary divergences in reef fishes of the family Acanthuridae (Perciformes: Teleostei). Mol Phylogenet Evol 26:190–201

    Article  CAS  PubMed  Google Scholar 

  • Clements KD, Sutton DC, Choat JH (1989) Occurrence and characteristics of unusual protistan symbionts from surgeonfishes Acanthuridae of the Great Barrier Reef, Australia. Mar Biol 102:403–412

    Article  Google Scholar 

  • Clements S (2015) Assessment of the functional complementarity among grazing Hawaiian surgeonfish: a multi-pronged approach. University of California, San Diego

    Google Scholar 

  • Connell SD, Foster MS, Airoldi L (2014) What are algal turfs? Towards a better description of turfs. Mar Ecol Prog Ser 495:299–307

    Article  Google Scholar 

  • Côté IM, Precht WF, Aronson RB, Gardner TA (2013) Is Jamaica a good model for understanding Caribbean coral reef dynamics? Mar Pollut Bull 76:28–31

    Article  CAS  PubMed  Google Scholar 

  • Cowan Z-L, Pratchett M, Messmer V, Ling S (2017) Known predators of crown-of-thorns starfish (Acanthaster spp.) and their role in mitigating, if not preventing, population outbreaks. Diversity 9:7

    Article  Google Scholar 

  • Cowman PF, Bellwood DR (2011) Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J Evol Biol 24:2543–2562

    Article  CAS  PubMed  Google Scholar 

  • Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40:209–224

    Article  Google Scholar 

  • Craig PC, Choat JH, Axe LM, Saucerman S (1997) Population biology and harvest of a coral reef surgeonfish (Acanthurus lineatus) in American Samoa. Fish Bull 95:680–693

    Google Scholar 

  • Cramer M, Fidler RY, Penrod L, Carroll J, Turingan R (2020) A spatiotemporal comparison of length-at-age in the coral reef fish Acanthurus nigrofuscus between marine reserves and fished reefs. PLoS ONE 15:e0239842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossman DJ, Choat JH, Clements KD (2005) Nutritional ecology of nominally herbivorous fishes on coral reefs. Mar Ecol Prog Ser 296:129–142

    Article  CAS  Google Scholar 

  • Crossman DJ, Choat JH, Clements KD, Hardy T, McConochie J (2001) Detritus as food for grazing fishes on coral reefs. Limnol Oceanogr 46:1596–1605

    Article  Google Scholar 

  • Darwin C (1842) On the Structure and Distribution of Coral Reefs: Being the First Part of the Geology of the Voyage of the Beagle Under the Command of Captain Fitzroy, RN During the Years 1832 to 1836. Smith Elder, London

    Google Scholar 

  • Davis JP, Pitt KA, Fry B, Olds AD, Connolly RM (2014) Seascape-scale trophic links for fish on inshore coral reefs. Coral Reefs 33:897–907

    Article  Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–111

    Article  CAS  PubMed  Google Scholar 

  • Debenay J, Sigura A, Justine J (2011) Foraminifera in the diet of coral reef fish from the lagoon of New Caledonia: Predation, digestion, dispersion. Rev Micropaléontologie 54:87–103

    Article  Google Scholar 

  • Dell CLA, Longo GO, Burkepile DE, Manfrino C (2020) Few herbivore species consume dominant macroalgae on a Caribbean coral reef. Front Mar Sci 7:676

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2003) The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser 256:183–191

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2005) Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol 15:R288–R289

    Article  CAS  PubMed  Google Scholar 

  • Depczynski M, Bellwood DR (2006) Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87:3119–3127

    Article  PubMed  Google Scholar 

  • Di Martino E, Jackson JBC, Taylor PD, Johnson KG (2018) Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Sci Adv 4:eaaq1508

  • Dias TLP, Rosa IL, Feitoza BM (2001) Food resource and habitat sharing by the three western south Atlantic surgeonfishes (Teleostei: Acanthuridae: Acanthurus) off Paraíba Coast, North-eastern Brazil. aqua. J Icthyol Aquat Biol 5:1–10

    Google Scholar 

  • Diaz-Pulido G, Harii S, McCook LJ, Hoegh-Guldberg O (2010) The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29:203–208

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ (2002) The fate of bleached corals: patterns and dynamics of algal recruitment. Mar Ecol Prog Ser 232:115–128

    Article  Google Scholar 

  • Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121–132

    Article  Google Scholar 

  • Dromard CR, Bouchon-Navaro Y, Harmelin-Vivien M, Bouchon C (2015) Diversity of trophic niches among herbivorous fishes on a Caribbean reef (Guadeloupe, Lesser Antilles), evidenced by stable isotope and gut content analyses. J Sea Res 95:124–131

    Article  Google Scholar 

  • Dudgeon SR, Aronson RB, Bruno JF, Precht WF (2010) Phase shifts and stable states on coral reefs. Mar Ecol Prog Ser 413:201–216

    Article  Google Scholar 

  • Duncan A, Poppi D (2008) Nutritional ecology of grazing and browsing ruminants. In: Gordon I, Prins H (eds) The Ecology of browsing and grazing. Springer, Berlin, pp 89–112

    Chapter  Google Scholar 

  • Duran A, Adam TC, Palma L, Moreno S, Collado-Vides L, Burkepile DE (2019) Feeding behavior in Caribbean surgeonfishes varies across fish size, algal abundance, and habitat characteristics. Mar Ecol 40:e12561

    Article  Google Scholar 

  • Edwards CB, Friedlander AM, Green AG, Hardt MJ, Sala E, Sweatman HP, Williams ID, Zgliczynski B, Sandin SA, Smith JE (2014) Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc R Soc B Biol Sci 281:20131835

    Article  CAS  Google Scholar 

  • Eggertsen L, Goodell W, Cordeiro CAMM, Mendes TC, Longo GO, Ferreira CEL, Berkström C (2020) Seascape configuration leads to spatially uneven delivery of parrotfish herbivory across a western Indian ocean seascape. Diversity 12:434

    Article  CAS  Google Scholar 

  • Emslie MJ, Cappo M, Currey-Randall LM, Gonzalez-Rivero M, Johns K, Jonker M, Osborne K, Srinivasan M (2019) Status and trends of reef fish and benthic assemblages of the far northern Great Barrier Reef. Australian Insitute of Marine Sciences, Townsville

    Google Scholar 

  • Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA (2012) Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Pollut Bull 64:1737–1765

    Article  CAS  PubMed  Google Scholar 

  • Eskander SMSU, Fankhauser S (2020) Reduction in greenhouse gas emissions from national climate legislation. Nat Clim Chang 10:750–756

    Article  CAS  Google Scholar 

  • Eurich JG, Shomaker SM, Mccormick MI, Jones P (2018) Experimental evaluation of the effect of a territorial damselfish on foraging behaviour of roving herbivores on coral reefs. J Exp Mar Bio Ecol 506:155–162

    Article  Google Scholar 

  • Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146

    Article  CAS  PubMed  Google Scholar 

  • Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–1106

    Article  Google Scholar 

  • Ferreira CEL, Gonçalves JEA (2006) Community structure and diet of roving herbivorous reef fishes in the Abrolhos Archipelago, south-western Atlantic. J Fish Biol 69:1533–1551

    Article  Google Scholar 

  • Ferreira CM, Nagelkerken I, Goldenberg SU, Connell SD (2018) CO2 emissions boost the benefits of crop production by farming damselfish. Nat Ecol Evol 2:1223–1226

    Article  PubMed  Google Scholar 

  • Fishelson L, Delarea Y (2014) Comparison of the oral cavity architecture in surgeonfishes (Acanthuridae, Teleostei), with emphasis on the taste buds and jaw “retention plates.” Environ Biol Fishes 97:173–185

    Article  Google Scholar 

  • Floeter SR, Bender MG, Siqueira AC, Cowman PF (2018) Phylogenetic perspectives on reef fish functional traits. Biol Rev 93:131–151

    Article  PubMed  Google Scholar 

  • Fong CR, Bittick SJ, Fong P (2018) Simultaneous synergist, antagonistic, and additive interactions between multiple local stressors all degrade algal turf communities on coral reefs. J Ecol 106:1390–1400

    Article  CAS  Google Scholar 

  • Ford AK, Bejarano S, Marshell A, Mumby PJ (2016) Linking the biology and ecology of key herbivorous unicornfish to fisheries management in the Pacific. Aquat Conserv Mar Freshw Ecosyst 26:790–805

    Article  Google Scholar 

  • Foster SA (1985) Group foraging by a coral reef fish: a mechanism for gaining access to defended resources. Anim Behav 33:782–792

    Article  Google Scholar 

  • Fox R, Bellwood D (2008) Direct versus indirect methods of quantifying herbivore grazing impact on a coral reef. Mar Biol 154:325–334

    Article  Google Scholar 

  • Fox RJ, Bellwood DR (2007) Quantifying herbivory across a coral reef depth gradient. Mar Ecol Prog Ser 339:49–59

    Article  Google Scholar 

  • Fox RJ, Bellwood DR (2013) Niche partitioning of feeding microhabitats produces a unique function for herbivorous rabbitfishes (Perciformes, Siganidae) on coral reefs. Coral Reefs 32:13–23

    Article  Google Scholar 

  • Francini-Filho RB, Ferreira CM, Coni EOC, De Moura RL, Kaufman L (2010) Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: Influence of resource availability and interference competition. J Mar Biol Assoc United Kingdom 90:481–492

    Article  Google Scholar 

  • Friedlander A, Aeby G, Brown E, Clark A, Coles S, Dollar S, Hunter C, Jokiel P, Smith J, Walsh B, Williams I, Wiltse W (2005) The state of coral reef ecosystems of the Main Hawaiian Islands. In: Waddell J (eds) The state of coral reef ecosystems of the United States and Pacific freely associated states. NOAA/National Centers for Coastal Ocean Science, Silver Spring, MD, pp 222–269

  • Friedlander AM, Sandin SA, Demartini EE, Sala E (2010) Spatial patterns of the structure of reef fish assemblages at a pristine atoll in the central Pacific. Mar Ecol Prog Ser 410:219–231

    Article  Google Scholar 

  • Friedman ST, Price SA, Hoey AS, Wainwright PC (2016) Ecomorphological convergence in planktivorous surgeonfishes. J Evol Biol 29:965–978

    Article  CAS  PubMed  Google Scholar 

  • Froese R, Pauly D (2018) Fishbase. www.fishbase.org

  • Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26:217–228

    Article  Google Scholar 

  • Fulton CJ, Abesamis RA, Berkström C, Depczynski M, Graham NAJ, Holmes TH, Kulbicki M, Noble MM, Radford BT, Tano S, Tinkler P, Wernberg T, Wilson SK (2019) Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol 33:989–999

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR (2005) Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264

    Article  Google Scholar 

  • Fulton CJ, Berkström C, Wilson SK, Abesamis RA, Bradley M, Åkerlund C, Barrett LT, Bucol AA, Chacin DH, Chong-Seng KM, Coker DJ, Depczynski M, Eggertsen L, Eggertsen M, Ellis D, Evans RD, Graham NAJ, Hoey AS, Holmes TH, Kulbicki M, Leung PTY, Lam PKS, van Lier J, Matis PA, Noble MM, Pérez-Matus A, Piggott C, Radford BT, Tano S, Tinkler P (2020) Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish 21:700–717

    Article  Google Scholar 

  • Gasparini JL, Floeter SR, Ferreira CEL, Sazima I (2005) Marine ornamental trade in Brazil. Biol Conserv 14:2883–2899

    Google Scholar 

  • Goatley CHR, Bellwood DR (2010) Biologically mediated sediment fluxes on coral reefs: sediment removal and off-reef transportation by the surgeonfish Ctenochaetus striatus. Mar Ecol Prog Ser 415:237–245

    Article  Google Scholar 

  • Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. Biol Lett 8:1016–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bellwood DR (2013) Ecological consequences of sediment on high-energy coral reefs. PLoS ONE 8:e77737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goatley CHR, Bonaldo RM, Fox RJ, Bellwood DR (2016) Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol Soc 21:29

    Article  Google Scholar 

  • Goatley CHR, Wroe S, Tebbett SB, Bellwood DR (2018) An evaluation of a double-tailed deformity in a coral-reef surgeonfish Acanthurus nigrofuscus (Acanthuridae) using micro-computed tomography. J Fish Biol 92:1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Gordon SE, Goatley CHR, Bellwood DR (2016) Composition and temporal stability of benthic sediments on inner-shelf coral reefs. Mar Pollut Bull 111:178–183

    Article  CAS  PubMed  Google Scholar 

  • Gove JM, McManus MA, Neuheimer AB, Polovina JJ, Drazen JC, Smith CR, Merrifield MA, Friedlander AM, Ehses JS, Young CW, Dillon AK, Williams GJ (2016) Near-island biological hotspots in barren ocean basins. Nat Commun 7:10581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gove JM, Williams GJ, McManus MA, Clark SJ, Ehses JS, Wedding LM (2015) Coral reef benthic regimes exhibit non-linear threshold responses to natural physical drivers. Mar Ecol Prog Ser 522:33–48

    Article  Google Scholar 

  • Gowan JC, Tootell JS, Carpenter RC (2014) The effects of water flow and sedimentation on interactions between massive Porites and algal turf. Coral Reefs 33:651–663

    Article  Google Scholar 

  • Graham NAJ, Bellwood DR, Cinner JE, Hughes TP, Norstrom AV, Nyström M (2013) Managing resilience to reverse phase shifts in coral reefs. Front Ecol Environ 11:541–548

    Article  Google Scholar 

  • Graham NAJ, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14

    Article  Google Scholar 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326

    Article  Google Scholar 

  • Graham NAJ, Wilson SK, Carr P, Hoey AS, Jennings S, MacNeil MA (2018) Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559:250–253

    Article  CAS  PubMed  Google Scholar 

  • Grigg RW (1998) Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17:263–272

    Article  Google Scholar 

  • Guiasu CR, Winterbottom R (1993) Osteological evidence for the phylogeny of recent genera of surgeonfishes (Percomorpha, Acanthuridae). Copeia 2:300–312

    Article  Google Scholar 

  • Hamner WM, Colin PL, Hamner PP (2007) Export – import dynamics of zooplankton on a coral reef in Palau. Mar Ecol Prog Ser 334:83–92

    Article  Google Scholar 

  • Hamner WM, Jones MS, Carleton JH, Hauri IR, Williams DM (1988) Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull Mar Sci 42:459–479

    Google Scholar 

  • Harborne AR (2013) The ecology, behaviour and physiology of fishes on coral reef flats, and the potential impacts of climate change. J Fish Biol 83:417–447

    Article  CAS  PubMed  Google Scholar 

  • Harborne AR, Rogers A, Bozec Y-M, Mumby PJ (2017) Multiple stressors and the functioning of coral reefs. Ann Rev Mar Sci 9:445–468

    Article  PubMed  Google Scholar 

  • Hardman E, Green J, Desiré MS, Perrine S (2010) Movement of sonically tagged bluespine unicornfish, Naso unicornis, in relation to marine reserve boundaries in Rodrigues, western Indian Ocean. Aquat Conserv Mar Freshw Ecosyst 20:357–361

    Article  Google Scholar 

  • Harris JL, Lewis LS, Smith JE (2015) Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar Ecol Prog Ser 532:41–57

    Article  Google Scholar 

  • Hatcher BG (1988) Coral reef primary productivity: a beggar’s banquet. Trends Ecol Evol 3:106–111

    Article  CAS  PubMed  Google Scholar 

  • Hausfather Z, Peters GP (2020) Emissions—The ‘business as usual’ story is misleading. Nature 577:618–620

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JP, Roberts CM (2004) Effects of artisanal fishing on Caribbean coral reefs. Conserv Biol 18:215–226

    Article  Google Scholar 

  • Hay ME (1981) The functional morphology of turf-forming seaweeds: persistence in stressful marine habitats. Ecology 62:739–750

    Article  Google Scholar 

  • Heenan A, Hoey AS, Williams GJ, Williams ID (2016) Natural bounds on herbivorous coral reef fishes. Proc R Soc B Biol Sci 283:20161716

    Article  Google Scholar 

  • Heenan A, Williams GJ, Williams ID (2020) Natural variation in coral reef trophic structure across environmental gradients. Front Ecol Environ 18:69–75

    Article  Google Scholar 

  • Hemingson CR, Bellwood DR (2018) Biogeographic patterns in major marine realms: function not taxonomy unites fish assemblages in reef, seagrass and mangrove systems. Ecography 41:174–182

    Article  Google Scholar 

  • Hemingson CR, Bellwood DR (2020) Greater multihabitat use in Caribbean fishes when compared to their Great Barrier Reef counterparts. Estuar Coast Shelf Sci 239:106748

    Article  Google Scholar 

  • Herbert-Read JE, Rosen E, Szorkovszky A, Loannou CC, Rogell B, Perna A, Ramnarine IW, Kotrschal A, Kolm N, Krause J, Sumpter DJT (2017) How predation shapes the social interaction rules of shoaling fish. Proc R Soc B 284:20171126

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiatt RW, Strasburg DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30:65–127

    Article  Google Scholar 

  • Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D’Lima C, Mills DJ, Roscher M, Thilsted SH, Thorne-Lyman AL, MacNeil MA (2019) Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574:95–98

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Guillén Bolaños T, Bindi M, Brown S, Camilloni IA, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Guiot J, Hijioka Y, Mehrotra S, Hope CW, Payne AJ, Pörtner H-O, Seneviratne SI, Thomas A, Warren R, Zhou G (2019) The human imperative of stabilizing global climate change at 1.5°C. Science 365:eaaw6974

  • Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:37–47

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2011) Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol Lett 14:267–273

    Article  PubMed  Google Scholar 

  • Horn M (1989) Biology of marine herbivorous fishes. Oceanogr Mar Biol an Annu Rev 27:167–272

    Google Scholar 

  • Houk P, Rhodes K, Cuetos-Bueno J, Lindfield S, Fread V, McIlwain JL (2012) Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs 31:13–26

    Article  Google Scholar 

  • Huertas V, Bellwood DR (2020) Trophic separation in planktivorous reef fishes: a new role for mucus? Oecologia 192:813–822

    Article  PubMed  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, Van NEH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Humphries AT, McClanahan TR, McQuaid CD (2020) Algal turf consumption by sea urchins and fishes is mediated by fisheries management on coral reefs in Kenya. Coral Reefs 39:1137–1146

    Article  Google Scholar 

  • Humphries AT, McQuaid CD, McClanahan TR (2015) Context-dependent diversity-effects of seaweed consumption on coral reefs in Kenya. PLoS ONE 10:e0144204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO (2020) Trophic interactions will expand geographically but be less intense as oceans warm. Glob Chang Biol 26:6805–6812

    Article  PubMed  Google Scholar 

  • Johns KA, Emslie MJ, Hoey AS, Osborne K, Jonker MJ, Cheal AJ (2018) Macroalgal feedbacks and substrate properties maintain a coral reef regime shift. Ecosphere 9:e02349

    Article  Google Scholar 

  • Johnson MD, Comeau S, Lantz CA, Smith JE (2017) Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36:1059–1070

    Article  Google Scholar 

  • Johnstone RW, Koop K, Larkum AWD (1990) Physical aspects of coral reef lagoon sediments in relation to detritus processing and primary production. Mar Ecol Prog Ser 66:273–283

    Article  Google Scholar 

  • Jones R (1968) Ecological relationships in Hawaiian and Johnston Island Acanthuridae (surgeonfishes). Micronesica 4:309–361

    Google Scholar 

  • Jones R, Bessell-browne P, Fisher R, Klonowski W, Slivkoff M (2016) Assessing the impacts of sediments from dredging on corals. Mar Pollut Bull 102:9–29

    Article  CAS  PubMed  Google Scholar 

  • Jones R, Fisher R, Stark C, Ridd P (2015a) Temporal patterns in seawater quality from dredging in tropical environments. PLoS ONE 10:e0137112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones R, Ricardo GF, Negri AP (2015b) Effects of sediments on the reproductive cycle of corals. Mar Pollut Bull 100:13–33

    Article  CAS  PubMed  Google Scholar 

  • Jouffray JB, Wedding LM, Norström AV, Donovan MK, Williams GJ, Crowder LB, Erickson AL, Friedlander AM, Graham NAJ, Gove JM, Kappel CV, Kittinger JN, Lecky J, Oleson KLL, Selkoe KA, White C, Williams ID, Nyström M (2019) Parsing human and biophysical drivers of coral reef regimes. Proc R Soc B Biol Sci 286:20182544

    Article  Google Scholar 

  • Karkarey R, Rathod P, Arthur R, Yadav S, Theo A, Alcoverro T (2020) Wave exposure reduces herbivory in post-disturbed reefs by filtering species composition, abundance and behaviour of key fish herbivores. Sci Rep 10:9854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly ELA, Eynaud Y, Clements SM, Gleason M, Sparks RT, Williams ID, Smith JE (2016) Investigating functional redundancy versus complementarity in Hawaiian herbivorous coral reef fishes. Oecologia 182:1151–1163

    Article  PubMed  Google Scholar 

  • Kelly ELA, Eynaud Y, Williams DI, Sparks TR, Dailer L, Sandin AS, Smith JE (2017) A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui. Hawaii. Ecosphere 8:e01899

    Article  Google Scholar 

  • Kench PS, Brander RW (2006) Wave processes on coral reef flats: implications for reef geomorphology using Australian case studies. J Coast Res 22:209–223

    Article  Google Scholar 

  • Khan JA, Goatley CHR, Brandl SJ, Tebbett SB, Bellwood DR (2017) Shelter use by large reef fishes: long-term occupancy and the impacts of disturbance. Coral Reefs 36:1123–1132

    Article  Google Scholar 

  • Klanten SO, van Herwerden L, Choat JH, Blair D (2004) Patterns of lineage diversification in the genus Naso (Acanthuridae). Mol Phylogenet Evol 32:221–235

    Article  CAS  PubMed  Google Scholar 

  • Klumpp DW, McKinnon AD (1989) Temporal and spatial patterns in primary production of a coral-reef epilithic algal community. J Exp Mar Biol Ecol 131:1–22

    Article  Google Scholar 

  • Klumpp DW, McKinnon AD (1992) Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: dynamics at different spatial scales. Mar Ecol Prog Ser 86:77–89

    Article  Google Scholar 

  • Klumpp DW, McKinnon D, Daniel P (1987) Damselfish territories: zones of high productivity on coral reefs. Mar Ecol Prog Ser 40:41–51

    Article  Google Scholar 

  • Konow N, Bellwood DR, Wainwright PC, Kerr AM (2008) Evolution of novel jaw joints promote trophic diversity in coral reef fishes. Biol J Linn Soc 93:545–555

    Article  Google Scholar 

  • Kopp D, Bouchon-Navaro Y, Cordonnier S, Haouisée A, Louis M, Bouchon C (2010) Evaluation of algal regulation by herbivorous fishes on Caribbean coral reefs. Helgol Mar Res 64:181–190

    Article  Google Scholar 

  • Krone R, Bshary R, Paster M, Eisinger M, van Treeck P, Schuhmacher H (2008) Defecation behaviour of the lined bristletooth surgeonfish Ctenochaetus striatus (Acanthuridae). Coral Reefs 27:619–622

    Article  Google Scholar 

  • Krone R, Paster M, Schuhmacher H (2011) Effect of the surgeonfish Ctenochaetus striatus (Acanthuridae) on the processes of sediment transport and deposition on a coral reef in the Red Sea. Facies 57:215–221

    Article  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117

    Article  Google Scholar 

  • Lau JD, Hicks CC, Gurney GG, Cinner JE (2019) What matters to whom and why? Understanding the importance of coastal ecosystem services in developing coastal communities. Ecosyst Serv 35:219–230

    Article  Google Scholar 

  • Latrille FX, Tebbett SB, Bellwood DR (2019) Quantifying sediment dynamics on an inshore coral reef: Putting algal turfs in perspective. Mar Pollut Bull 141:404–415

    Article  CAS  PubMed  Google Scholar 

  • Lefcheck JS, Innes-Gold AA, Brandl SJ, Steneck RS, Torres RE, Rasher DB (2019) Tropical fish diversity enhances coral reef functioning across multiple scales. Sci Adv 5:eaav6420

    Article  PubMed  PubMed Central  Google Scholar 

  • Lessios H, Robertson D (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc R Soc B Biol Sci 273:2201–2208

    Article  CAS  Google Scholar 

  • Lessios HA (2008) The great American schism: divergence of marine organisms after the rise of the central American isthmus. Annu Rev Ecol Evol Syst 39:63–91

    Article  Google Scholar 

  • Lewis SM, Wainwright PC (1985) Herbivore abundance and grazing intensity on a Caribbean coral reef. J Exp Mar Biol Ecol 81:215–228

    Article  Google Scholar 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392–399

    Article  Google Scholar 

  • Lobato FL, Barneche DR, Siqueira AC, Liedke AMR, Lindner A, Pie MR, Bellwood DR, Floeter SR (2014) Diet and diversification in the evolution of coral reef fishes. PLoS ONE 9:e102094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobel PS (1981) Trophic biology of herbivorous reef fishes: alimentary pH and digestive capabilities. J Fish Biol 19:365–397

    Article  Google Scholar 

  • Loffler Z, Bellwood DR, Hoey AS (2015) Among-habitat algal selectivity by browsing herbivores on an inshore coral reef. Coral Reefs 34:597–605

    Article  Google Scholar 

  • Loffler Z, Graba-Landry A, Kidgell JT, McClure EC, Pratchett MS, Hoey AS (2018) Holdfasts of Sargassum swartzii are resistant to herbivory and resilient to damage. Coral Reefs 37:1075–1084

    Article  Google Scholar 

  • Longo GO, Ferreira CEL, Floeter SR (2014) Herbivory drives large-scale spatial variation in reef fish trophic interactions. Ecol Evol 4:4553–4566

    Article  PubMed  PubMed Central  Google Scholar 

  • Longo GO, Hay ME, Ferreira CEL, Floeter SR (2019) Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob Ecol Biogeogr 28:107–117

    Article  Google Scholar 

  • Longo GO, Morais RA, Martins CDL, Mendes TC, Aued AW, Cândido V, de Oliveira JC, Nunes LT, Fontoura L, Sissini MN, Teschima MM, Silva MB, Ramlov F, Gouvea LP, Ferreira CEL, Segal B, Horta PA, Floeter SR (2015) Between-habitat variation of benthic cover, reef fish assemblage and feeding Pressure on the benthos at the only atoll in South Atlantic: Rocas Atoll. NE Brazil. Plos One 10:e0127176

    Article  CAS  PubMed  Google Scholar 

  • Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Ann Rev Mar Sci 7:43–66

    Article  PubMed  Google Scholar 

  • Ludt WB, Rocha LA, Erdmann MV, Chakrabarty P (2015) Skipping across the tropics: the evolutionary history of sawtail surgeonfishes (Acanthuridae: Prionurus). Mol Phylogenet Evol 84:166–172

    Article  PubMed  Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  CAS  PubMed  Google Scholar 

  • Magris RA, Ban NC (2019) A meta-analysis reveals global patterns of sediment effects on marine biodiversity. Glob Ecol Biogeogr 28:1879–1898

    Article  Google Scholar 

  • Mallela J (2018) The influence of micro-topography and external bioerosion on coral-reef-building organisms: recruitment, community composition and carbonate production over time. Coral Reefs 37:227–237

    Article  Google Scholar 

  • Máñez SK, Dandava L, Ekau W (2014) Fishing the last frontier: the introduction of the marine aquarium trade and its impact on local fishing communities in Papua New Guinea. Mar Policy 44:279–286

    Article  Google Scholar 

  • Marshall N, Marshall P, Curnock M, Pert P, Smith A, Visperas B (2019) Identifying indicators of aesthetics in the Great Barrier Reef for the purposes of management. PLoS ONE 14:e0210196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshell A, Mills JS, Rhodes KL, McIlwain J (2011) Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a marine reserve. Coral Reefs 30:631–642

    Article  Google Scholar 

  • Marshell A, Mumby PJ (2012) Revisiting the functional roles of the surgeonfish Acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs 31:1093–1101

    Article  Google Scholar 

  • Marshell A, Mumby PJ (2015) The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. J Exp Mar Bio Ecol 473:152–160

    Article  Google Scholar 

  • Max LM, Hamilton SL, Gaines SD, Warner RR (2013) Benthic processes and overlying fish assemblages drive the composition of benthic detritus on a central Pacific coral reef. Mar Ecol Prog Ser 482:181–195

    Article  Google Scholar 

  • McAndrews RS, Eich A, Ford AK, Bejarano S, Lal RR, Ferse SCA (2019) Algae sediment dynamics are mediated by herbivorous fishes on a nearshore coral reef. Coral Reefs 38:431–441

    Article  Google Scholar 

  • McClure EC, Hoey AS, Sievers KT, Abesamis RA, Russ GR (2021) Relative influence of environmental factors and fishing on coral reef fish assemblages. Conserv Biol 35:976–990

    Article  PubMed  Google Scholar 

  • McClure EC, Richardson LE, Graba-landry A, Loffler Z, Russ GR, Hoey AS (2019) Cross-shelf differences in the response of herbivorous fish assemblages to severe environmental disturbances. Diversity 11:23

    Article  Google Scholar 

  • McCook LJ, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • McNaughton S, Georgiadis N (1986) Ecology of African grazing and browsing mammals. Annu Rev Ecol Syst 17:39–65

    Article  Google Scholar 

  • Mendes TC, Cordeiro CAMM, Ferreira CEL (2015) An experimental evaluation of macroalgal consumption and selectivity by nominally herbivorous fishes on subtropical rock reefs. J Exp Mar Biol Ecol 471:146–152

    Article  Google Scholar 

  • Mendes TC, Ferreira CEL, Clements KD (2018) Discordance between diet analysis and dietary macronutrient content in four nominally herbivorous fishes from the Southwestern Atlantic. Mar Biol 165:180

    Article  CAS  Google Scholar 

  • Mendes TC, Quimbayo JP, Bouth HF, Silva LPS, Ferreira CEL (2019) The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J Fish Biol 95:812–819

    PubMed  Google Scholar 

  • Meyer CG, Holland KN (2005) Movement patterns, home range size and habitat utilization of the bluespine unicornfish, Naso unicornis (Acanthuridae) in a Hawaiian marine reserve. Environ Biol Fishes 73:201–210

    Article  Google Scholar 

  • Michael S (2001) A PocketExpert guide to marine fishes: 500+ essential to know aquarium species. TFH Publications, Neptune City

    Google Scholar 

  • Mihalitsis M, Hemingson CR, Goatley CHR, Bellwood DR (2021) The role of fishes as food: a functional perspective on predator-prey interactions. Funct Ecol 35:1109–1119

    Article  Google Scholar 

  • Militz TA, Kinch J, Foale S, Southgate PC (2016) Fish rejections in the marine aquarium trade: an initial case study raises concern for village-based fisheries. PLoS ONE 11:e0151624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake S, Ngugi DK, Stingl U (2015) Diet strongly influences the gut microbiota of surgeonfishes. Mol Ecol 24:656–672

    Article  PubMed  Google Scholar 

  • Miyake S, Ngugi DK, Stingl U (2016) Phylogenetic diversity, distribution, and cophylogeny of giant bacteria (Epulopiscium) with their surgeonfish hosts in the Red Sea. Front Microbiol 7:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery W, Pollak P (1988) Gut anatomy and pH in a Red Sea surgeonfish, Acanthurus nigrofuscus. Mar Ecol Prog Ser 44:7–13

    Article  Google Scholar 

  • Montgomery WL, Gerrodette T, Marshall LD (1980) Effects of grazing by the yellowtail surgeonfish, Prionurus punctatus, on algal communities in the Gulf of California, Mexico. Bull Mar Sci 30:901–908

    Google Scholar 

  • Montgomery WL, Myrberg AA, Fishelson L (1989) Feeding ecology of surgeonfishes (Acanthuridae) in the northern Red Sea, with particular reference to Acanthurus nigrofuscus (Forsskål). J Exp Mar Biol Ecol 132:179–207

    Article  Google Scholar 

  • Morais RA, Bellwood DR (2018) Global drivers of reef fish growth. Fish Fish 19:874–889

    Article  Google Scholar 

  • Morais RA, Bellwood DR (2019) Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr Biol 29:1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Morais RA, Bellwood DR (2020) Principles for estimating fish productivity on coral reefs. Coral Reefs 39:1221–1231

    Article  Google Scholar 

  • Morais RA, Brown J, Bedard S, Ferreira CEL, Floeter SR, Quimbayo JP, Rocha LA, Sazima I (2017) Mob rulers and part-time cleaners: two reef fish associations at the isolated Ascension Island. J Mar Biol Assoc United Kingdom 97:799–811

    Article  CAS  Google Scholar 

  • Morais RA, Connolly SR, Bellwood DR (2020a) Human exploitation shapes productivity-biomass relationships on coral reefs. Glob Chang Biol 26:1295–1305

    Article  PubMed  Google Scholar 

  • Morais RA, Depczynski M, Fulton CJ, Marnane MJ, Narvaez P, Huertas V, Brandl SJ, Bellwood DR (2020b) Severe coral loss shifts energetic dynamics on a coral reef. Funct Ecol 34:1507–1518

    Article  Google Scholar 

  • Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR (2021) Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 19:e3001435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran D, Turner SJ, Clements KD (2005) Ontogenetic development of the gastrointestinal microbiota in the marine herbivorous fish Kyphosus sydneyanus. Microbiol Ecol 49:590–597

    Article  CAS  Google Scholar 

  • Moreno-Sánchez XG, Abitia-Cárdenas LA, Riosmena-Rodríguez R, Cabrera-Huerta M, Gutiérrez-Sánchez FJ (2014) Diet of the yellowtail surgeonfish Prionurus punctatus (Gill, 1862) on the rocky reef of Los Frailes, Baja California Sur, México. Cah Biol Mar 55:1–8

  • Morgan IE, Kramer DL (2004) The social organization of adult blue tangs, Acanthurus coeruleus, on a fringing reef, Barbados, West Indies. Environ Biol Fishes 71:261–273

    Article  Google Scholar 

  • Munsterman KS, Allgeier JE, Peters JR, Burkepile DE (2021) A view from both ends: shifts in herbivore assemblages impact top-down and bottom-up processes on coral reefs. Ecosystems. https://doi.org/10.1007/s10021-021-00612-0

    Article  Google Scholar 

  • Nalley EM, Donahue MJ, Toonen RJ (2021) Metabarcoding as a tool to examine cryptic algae in the diets of two common grazing surgeonfishes, Acanthurus Triostegus and A. Nigrofuscus. Environ DNA. https://doi.org/10.1002/edn3.206

    Article  Google Scholar 

  • Nañola CL, Aliño PM, Carpenter KE (2011) Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity. Environ Biol Fishes 90:405–420

    Article  Google Scholar 

  • Nelson SG, Wilkins SDC (1988) Sediment processing by the surgeonfish Ctenochaetus striatus at Moorea, French Polynesia. J Fish Biol 32:817–824

    Article  Google Scholar 

  • Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ, Blom J, Tietbohl MD, Berumen ML, Stingl U (2017) Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proc Natl Acad Sci 114:E7592–E7601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nugues MM, Roberts CM (2003) Coral mortality and interaction with algae in relation to sedimentation. Coral Reefs 22:507–516

    Article  Google Scholar 

  • Nugues MM, Smith GW, van Hooidonk RJ, Seabra MI, Bak RPM (2004) Algal contact as a trigger for coral disease. Ecol Lett 7:919–923

    Article  Google Scholar 

  • Nursall J (1974) Some territorial behavioral attributes of the surgeonfish Acanthurus lineatus at Heron Island, Queensland. Copeia 4:950–959

    Article  Google Scholar 

  • Nyström M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4:406–417

    Article  Google Scholar 

  • O’Brien JM, Scheibling RE (2018) Turf wars: competition between foundation and turf-forming species on temperate and tropical reefs and its role in regime shifts. Mar Ecol Prog Ser 590:1–17

    Article  Google Scholar 

  • O’Dea A, Jackson JBC, Fortunato H, Smith JT, D’Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci 104:5501–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley-Cogan A, Tebbett SB, Bellwood DR (2020) Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions. PLoS ONE 15:e0233498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ober GT, Diaz-Pulido G, Thornber C (2016) Ocean acidification influences the biomass and diversity of reef-associated turf algal communities. Mar Biol 163:204

    Article  CAS  Google Scholar 

  • Ogden JC, Lobel PS (1978) The role of herbivorous fishes and urchins in coral reef communities. Environ Biol Fishes 3:49–63

    Article  Google Scholar 

  • Ogston AS, Storlazzi CD, Field ME, Presto MK (2004) Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii. Coral Reefs 23:559–569

    Google Scholar 

  • Okemwa GM, Arara-Kaunda B, Kimani EN, Ogutu B (2016) Catch composition and sustainability of the marine aquarium fishery in Kenya. Fish Res 183:19–31

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Parata L, Nielsen S, Xing X, Thomas T, Egan S, Vergés A (2020) Age, gut location and diet impact the gut microbiome of a tropical herbivorous surgeonfish. FEMS Microbiol Ecol 96:fiz179

  • Perry CT, Kench PS, O’Leary MJ, Morgan KM, Januchowski-Hartley F (2015) Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43:503–506

    Article  Google Scholar 

  • Pestle WJ (2013) Fishing down a prehistoric Caribbean marine food web: isotopic evidence from Punta Candelero, Puerto Rico. J Isl Coast Archaeol 8:228–254

    Article  Google Scholar 

  • Plass-Johnson JG, Ferse SCA, Jompa J, Wild C, Teichberg M (2015) Fish herbivory as key ecological function in a heavily degraded coral reef system. Limnol Oceanogr 60:1382–1391

    Article  Google Scholar 

  • Polunin NVC, Klumpp DW (1992) Algal food supply and grazer demand in a very productive coral-reef zone. J Exp Mar Bio Ecol 164:1–15

    Article  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes - Ecological and economic consequences. Oceanogr Mar Biol an Annu Rev 46:251–296

    Google Scholar 

  • Puk LD, Ferse SCA, Wild C (2016) Patterns and trends in coral reef macroalgae browsing: a review of browsing herbivorous fishes of the Indo-Pacific. Rev Fish Biol Fish 26:53–70

    Article  Google Scholar 

  • Purcell SW (2000) Association of epilithic algae with sediment distribution on a windward reef in the northern Great Barrier Reef, Australia. Bull Mar Sci 66:199–214

    Google Scholar 

  • Purcell SW, Bellwood DR (1993) A functional analysis of food procurement in two surgeonfish species, Acanthurus nigrofuscus and Ctenochaetus striatus (Acanthuridae). Environ Biol Fishes 37:139–159

    Article  Google Scholar 

  • Purcell SW, Bellwood DR (2001) Spatial patterns of epilithic algal and detrital resources on a windward coral reef. Coral Reefs 20:117–125

    Article  Google Scholar 

  • Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, Kaschner K, Garilao C, Near TJ, Coll M, Alfaro ME (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559:392–395

    Article  CAS  PubMed  Google Scholar 

  • Randall JE (1955a) An analysis of the genera of surgeon fishes (Family Acanthuridae). Pacific Sci 9:359–367

    Google Scholar 

  • Randall JE (1955b) A contribution to the biology of the Acanthuridae (Surgeon Fishes). PhD thesis. University of Hawaii, Hawaii, p 422

  • Randall JE (1956) A revision of the surgeon fish genus Acanthurus. Pacific Sci 10:159–235

    Google Scholar 

  • Randall JE (1961a) A contribution to the biology of the convict surgeonfish of the hawaiian Islands, Acanthurus triostegus sandvicensis. Pacific Sci 15:215–272

    Google Scholar 

  • Randall JE (1961b) Overgrazing of algae by herbivorous marine fishes. Ecology 42:812

    Article  Google Scholar 

  • Randall JE (1967) Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847

    Google Scholar 

  • Randall JE (2001) Surgeonfishes of the world. Mutual Publishing and Bishop Museum Press, Honolulu, Hawaii

    Google Scholar 

  • Randall JE (2005) Reef and shore fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawai’i Press, Honolulu, Hawaii

    Google Scholar 

  • Randall JE, Clements KD (2001) Second revision of the surgeonfish genus Ctenochaetus (Perciformes: Acanthuridae), with description of two new species. Indo-Pacific Fishes 32:1–33

    Google Scholar 

  • Rasher DB, Engel S, Bonito V, Fraser GJ, Montoya JP, Hay ME (2012) Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef. Oecologia 169:187–198

    Article  PubMed  Google Scholar 

  • Rasher DB, Hay ME (2010) Chemically rich seaweeds poison corals when not controlled by herbivores. Proc Natl Acad Sci 107:9683–9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasher DB, Hoey AS, Hay ME (2017) Cascading predator effects in a Fijian coral reef ecosystem. Sci Rep 7:15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358

    Article  PubMed  Google Scholar 

  • Reinthal PN, Lewis SM (1986) Social behavior, foraging effeiency, and habitat utilization in a group of tropical herbivorous fish. Anim Behav 34:1687–1693

    Article  Google Scholar 

  • Renema W, Bellwood DR, Braga JC, Bromfield K, Hall R, Johnson KG, Lunt P, Meyer CP, McMonagle LB, Morley RJ, O’Dea A, Todd JA, Wesselingh FP, Wilson MEJ, Pandolfi JM (2008) Hopping hotspots: global shifts in marine biodiversity. Science 321:654–657

    Article  CAS  PubMed  Google Scholar 

  • Ricardo GF, Jones RJ, Nordborg M, Negri AP (2017) Settlement patterns of the coral Acropora millepora on sediment-laden surfaces. Sci Total Environ 609:277–288

    Article  CAS  PubMed  Google Scholar 

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  CAS  PubMed  Google Scholar 

  • Robertson DR (1982) Fish feces as fish food on a Pacific coral reef. Mar Ecol Prog Ser 7:253–265

    Article  Google Scholar 

  • Robertson DR (1991) Increases in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panamá indicate food limitation. Mar Biol 111:437–444

    Article  Google Scholar 

  • Robertson DR, Sweatman HPA, Fletcher E, Cleland M (1976) Schooling as a mechanism for circumventing the territoriality of competitors. Ecology 57:1208–1220

    Article  Google Scholar 

  • Robertson DR (1989) The surgeonfish Acanthurus lineatus grows hedgerows of Macroalgae. Coral Reefs 8:8

    Article  Google Scholar 

  • Robertson DR, Ackerman JL, Choat JH, Posada JM, Pitt J (2005) Ocean surgeonfish Acanthurus bahianus I. The geography of demography. Mar Ecol Prog Ser 295:229–244

    Article  Google Scholar 

  • Robertson DR, Gaines SD (1986) Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67:1372–1383

    Article  Google Scholar 

  • Robertson DR, Polunin NVC, Leighton K (1979) The behavioral ecology of three Indian Ocean surgeonfishes (Acanthurus lineatus, A. leucosternon and Zebrasoma scopas): their feeding strategies, and social and mating systems. Environ Biol Fishes 4:125–170

    Article  Google Scholar 

  • Robinson JPW, McDevitt-Irwin JM, Dajka JC, Hadj-Hammou J, Howlett S, Graba-Landry A, Hoey AS, Nash KL, Wilson SK, Graham NAJ (2020) Habitat and fishing control grazing potential on coral reefs. Funct Ecol 34:240–251

    Article  Google Scholar 

  • Robinson JPW, Wilson SK, Jennings S, Graham NAJ (2019a) Thermal stress induces persistently altered coral reef fish assemblages. Glob Chang Biol 25:2739–2750

    Article  PubMed  Google Scholar 

  • Robinson JPW, Wilson SK, Robinson J, Gerry C, Lucas J, Assan C, Govinden R, Jennings S, Graham NAJ (2019b) Productive instability of coral reef fisheries after climate-driven regime shifts. Nat Ecol Evol 3:183–190

    Article  PubMed  Google Scholar 

  • Roff G, Bejarano S, Priest M, Marshell A, Chollett I, Steneck RS, Doropoulos C, Golbuu Y, Mumby PJ (2019) Seascapes as drivers of herbivore assemblages in coral reef ecosystems. Ecol Monogr 89:e01336

    Article  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2018) Fisheries productivity under progressive coral reef degradation. J Appl Ecol 55:1041–1049

    Article  Google Scholar 

  • Roman MR, Furnas MJ, Mullin MM (1990) Zooplankton abundance and grazing at Davies Reef, Great Barrier Reel Australia. Mar Biodivers Rec 105:73–82

    Google Scholar 

  • Russ GR (1984a) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20:23–34

    Article  Google Scholar 

  • Russ GR (1984b) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Patterns of zonation of mid-shelf and outershelf reefs. Mar Ecol Prog Ser 20:35–44

    Article  Google Scholar 

  • Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67

    Article  Google Scholar 

  • Russ GR, Alcala AC, Maypa AP (2003) Spillover from marine reserves: The case of Naso vlamingii at Apo Island, the Philippines. Mar Ecol Prog Ser 264:15–20

    Article  Google Scholar 

  • Russ GR, St. John J (1988) Diets, growth rates and secondary production of herbivorous coral reef fishes. Proc 6th Int Coral Reef Symp 2:37–43

  • Russ GR, Payne CS, Bergseth BJ, Rizzari JR, Abesamis RA, Alcala AC (2018) Decadal-scale response of detritivorous surgeonfishes (family Acanthuridae) to no-take marine reserve protection and changes in benthic habitat. J Fish Biol 93:887–900

    Article  PubMed  Google Scholar 

  • Russ GR, Questel S-LA, Rizzari JR, Alcala AC (2015) The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar Biol 162:2029–2045

    Article  Google Scholar 

  • Russ GR, Rizzari JR, Abesamis RA, Alcala AC (2021) Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol Appl 31:e02224

    Article  PubMed  Google Scholar 

  • Ruttenberg BI, Adam TC, Duran A, Burkepile DE (2019) Identity of coral reef herbivores drives variation in ecological processes over multiple spatial scales. Ecol Appl 29:e01893

    Article  PubMed  Google Scholar 

  • Sambrook K, Hoey AS, Andréfouët S, Cumming GS, Duce S, Bonin MC (2019) Beyond the reef: the widespread use of non-reef habitats by coral reef fishes. Fish Fish 20:903–920

    Article  Google Scholar 

  • Samoilys M, Roche R, Koldewey H, Turner J (2018) Patterns in reef fish assemblages: insights from the Chagos Archipelago. PLoS ONE 13:e0191448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoilys MA, Halford A, Osuka K (2019) Disentangling drivers of the abundance of coral reef fishes in the Western Indian Ocean. Ecol Evol 9:4149–4167

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiettekatte NMD, Barneche DR, Villéger S, Allgeier JE, Burkepile DE, Brandl SJ, Casey JM, Mercière A, Munsterman KS, Morat F, Parravicini V (2020) Nutrient limitation, bioenergetics and stoichiometry: a new model to predict elemental fluxes mediated by fishes. Funct Ecol 34:1857–1869

    Article  Google Scholar 

  • Schlaefer JA, Tebbett SB, Bellwood DR (2021) The study of sediments on coral reefs: a hydrodynamic perspective. Mar Pollut Bull 169:112580

    Article  CAS  PubMed  Google Scholar 

  • Schober UM, Ditrich H (1992) Anatomy and use of the caudal spines in the aggressive behaviour of a surgeonfish (Osteichthyes: Acanthuridae). Mar Behav Physiol 21:277–284

    Article  Google Scholar 

  • Schwalm CR, Glendon S, Duffy PB (2020) RCP8.5 tracks cumulative CO2 emissions. Proc Natl Acad Sci 117:19656–19657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JJ, Adam TC, Duran A, Burkepile DE, Rasher DB (2020) Intestinal microbes: an axis of functional diversity among large marine consumers. Proc R Soc B Biol Sci 287:20192367

    Article  Google Scholar 

  • Scott FJ, Russ GR (1987) Effects of grazing on species composition of the epilithic algal community on coral reefs of the central Great Barrier Reef. Mar Ecol Prog Ser 39:293–304

    Article  Google Scholar 

  • Shantz AA, Ladd MC, Schrack E, Burkepile DE (2015) Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol Appl 25:2142–2152

    Article  PubMed  Google Scholar 

  • Sievers KT, McClure EC, Abesamis RA, Russ GR (2020) Non-reef habitats in a tropical seascape affect density and biomass of fishes on coral reefs. Ecol Evol 10:13673–13686

    Article  PubMed  PubMed Central  Google Scholar 

  • Siqueira AC, Bellwood DR, Cowman PF (2019a) Historical biogeography of herbivorous coral reef fishes: the formation of an Atlantic fauna. J Biogeogr 46:1611–1624

    Article  Google Scholar 

  • Siqueira AC, Bellwood DR, Cowman PF (2019b) The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc R Soc B Biol Sci 286:20182672

    Article  Google Scholar 

  • Siqueira AC, Morais RA, Bellwood DR, Cowman PF (2020) Trophic innovations fuel reef fish diversification. Nat Commun 11:2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira AC, Morais RA, Bellwood DR, Cowman PF (2021) Planktivores as trophic drivers of global coral reef fish diversity patterns. Proc Natl Acad Sci USA 118:e2019404118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner C, Mill AC, Fox MD, Newman SP, Zhu Y, Kuhl A, Polunin NVC (2021) Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci Adv 7:eabf3792

  • Sluka RD, Miller M (2001) Herbivorous fish assemblages and herbivory pressure on Laamu Atoll, Republic of Maldives. Coral Reefs 20:255–262

    Article  Google Scholar 

  • Smith JE, Brainard R, Carter A, Grillo S, Edwards C, Harris J, Lewis L, Obura D, Rohwer F, Sala E, Vroom PS, Sandin S (2016) Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc R Soc B Biol Sci 283:20151985

    Article  CAS  Google Scholar 

  • Sorbini L, Tyler JC (1998) A new genus and species of Eocene surgeonfish (Acanthuridae) from Monte Bolca, Italy, with similarities to the Recent Zebrasoma. Stud e Ric Sui Giacimenti Terziari Di Bolca 7:7–19

    Google Scholar 

  • Sorenson L, Santini F, Carnevale G, Alfaro ME (2013) A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Mol Phylogenet Evol 68:150–160

    Article  CAS  PubMed  Google Scholar 

  • Speare KE, Duran A, Miller MW, Burkepile DE (2019) Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar Pollut Bull 144:189–195

    Article  CAS  PubMed  Google Scholar 

  • Steneck RS (1983) Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew. Symp Ser Undersea Res 1:103–111

    Google Scholar 

  • Steneck RS (1988) Herbivory on coral reefs: a synthesis. Proc 6th Int Coral Reef Symp 1:37–49

  • Steneck RS, Arnold SN, Boenish R, de León R, Mumby PJ, Rasher DB, Wilson MW (2019) Managing recovery resilience in coral reefs against climate-induced bleaching and hurricanes: a 15 year case study from Bonaire. Dutch Caribbean Front Mar Sci 6:265

    Article  Google Scholar 

  • Steneck RS, Bellwood DR, Hay ME (2017) Herbivory in the marine realm. Curr Biol 27:R484–R489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Stevenson TC, Tissot BN, Dierking J (2011) Fisher behaviour influences catch productivity and selectivity in West Hawaii’s aquarium fishery. ICES J Mar Sci 68:813–822

    Article  Google Scholar 

  • Streit RP, Cumming GS, Bellwood DR (2019) Patchy delivery of functions undermines functional redundancy in a high diversity system. Funct Ecol 33:1144–1155

    Article  Google Scholar 

  • Streit RP, Hoey AS, Bellwood DR (2015) Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs 34:1037–1047

    Article  Google Scholar 

  • Stevens CE, Humes ID (1995) Comparative physiology of the vertebrate digestive system, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ (2018) Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560:92–96

    Article  CAS  PubMed  Google Scholar 

  • Tang KL, Berendzen PB, Wiley EO, Morrissey JF, Winterbottom R, Johnson GD (1999) The phylogenetic relationships of the suborder Acanthuroidei (Teleostei: Perciformes) based on molecular and morphological evidence. Mol Phylogenet Evol 11:415–425

    Article  PubMed  Google Scholar 

  • Taylor BM (2019) Standing out in a big crowd: high cultural and economic calue of Naso unicornis in the insular pacific. Fishes 4:40

    Article  Google Scholar 

  • Taylor BM, Brandl SJ, Kapur M, Robbins WD, Johnson G, Huveneers C, Renaud P, Choat JH (2018) Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes. Ecology 99:642–651

    Article  PubMed  Google Scholar 

  • Taylor BM, Choat J, DeMartini E, Hoey A, Marshell A, Priest MA, Rhodes KL, Meekan MG (2019) Demographic plasticity facilitates ecological and economic resilience in a commercially important reef fish. J Anim Ecol 88:1888–1900

    Article  PubMed  Google Scholar 

  • Tebbett SB, Bellwood DR (2018) Unusual caudal spines in the surgeonfish Zebrasoma scopas. Coral Reefs 37:251

    Article  Google Scholar 

  • Tebbett SB, Bellwood DR (2019) Algal turf sediments on coral reefs: what’s known and what’s next. Mar Pollut Bull 149:110542

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Bellwood DR (2020) Sediments ratchet-down coral reef algal turf productivity. Sci Total Environ 713:136709

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Bellwood DR (2021) Algal turf productivity on coral reefs: a meta-analysis. Mar Environ Res 168:105311

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Bellwood DR, Purcell SW (2018a) Sediment addition drives declines in algal turf yield to herbivorous coral reef fishes: implications for reefs and reef fisheries. Coral Reefs 37:929–937

    Article  Google Scholar 

  • Tebbett SB, Chase TJ, Bellwood DR (2020a) Farming damselfishes shape algal turf sediment dynamics on coral reefs. Mar Environ Res 160:104988

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017a) Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus on coral reefs. Coral Reefs 36:803–813

    Article  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017b) Fine sediments suppress detritivory on coral reefs. Mar Pollut Bull 114:934–940

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017c) The effects of algal turf sediments and organic loads on feeding by coral reef surgeonfishes. PLoS ONE 12:e0169479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2017d) Algal turf sediments and sediment production by parrotfishes across the continental shelf of the northern Great Barrier Reef. PLoS ONE 12:e0170854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebbett SB, Goatley CHR, Bellwood DR (2018b) Algal turf sediments across the Great Barrier Reef: putting coastal reefs in perspective. Mar Pollut Bull 137:518–525

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Goatley CHR, Huertas V, Mihalitsis M, Bellwood DR (2018c) A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues. R Soc Open Sci 5:171111

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebbett SB, Goatley CHR, Streit RP, Bellwood DR (2020b) Algal turf sediments limit the spatial extent of function delivery on coral reefs. Sci Total Environ 734:139422

    Article  CAS  PubMed  Google Scholar 

  • Tebbett SB, Hoey AS, Depczynski M, Wismer S, Bellwood DR (2020c) Macroalgae removal on coral reefs: realised ecosystem functions transcend biogeographic locations. Coral Reefs 39:203–214

    Article  Google Scholar 

  • Tebbett SB, Morais RA, Goatley CHR, Bellwood DR (2021) Collapsing ecosystem functions on an inshore coral reef. J Environ Manage 289:112471

    Article  PubMed  Google Scholar 

  • Tebbett SB, Streit RP, Bellwood DR (2020d) A 3D perspective on sediment accumulation in algal turfs: implications of coral reef flattening. J Ecol 108:70–80

    Article  Google Scholar 

  • Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F (2019) Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 222:jeb209916

    Article  PubMed  Google Scholar 

  • Tietbohl M (2016) Assessing the functional diversity of herbivorous reef fishes using a compound-specific isotope approach. Masters thesis. King Abdullah University of Science and Technology

  • Tilghman GC, Klinger-Bowen R, Francis-Floyd R (2001) Feeding electivity indices in surgeonfish (Acanthuridae) of the Florida keys. Aquarium Sci Conserv 3:215–223

    Article  Google Scholar 

  • Tissot BN, Hallacher LE (2003) Effects of aquarium collectors on coral reef fishes in Kona. Hawaii Conserv Biol 17:1759–1768

    Article  Google Scholar 

  • Tissot BN, Walsh WJ, Hallacher LE (2004) Evaluating effectiveness of a marine protected area network in west hawai’i to increase productivity of an aquarium fishery. Pacific Sci 58:175–188

    Article  Google Scholar 

  • Topor ZM, Rasher DB, Duffy JE, Brandl SJ (2019) Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv Lett 12:e12638

    Article  Google Scholar 

  • Tribot A-S, Deter J, Claverie T, Guillhaumon F, Villéger S, Mouquet N (2019) Species diversity and composition drive the aesthetic value of coral reef fish assemblages. Biol Lett 15:20190703

    Article  PubMed  PubMed Central  Google Scholar 

  • Trip EL, Choat JH, Wilson DT, Robertson DR (2008) Inter-oceanic analysis of demographic variation in a widely distributed Indo-Pacific coral reef fish. Mar Ecol Prog Ser 373:97–109

    Article  Google Scholar 

  • Tyler JC (1970) Osteological aspects of interrelationships of surgeon fish genera (Acanthuridae). Proc Acad Nat Sci Philadelphia 122:87–124

    Google Scholar 

  • Tyler JC (2005) A new genus for the surgeon fish Acanthurus gaudryi De Zigno 1887 from the Eocene of Monte Bolca, Italy, a morphologically primitive basal taxon of Acanthuridae (Acanthuroidea, Perciformes). Ric Giac Terz Bolca 11:149–163

    Google Scholar 

  • Tyler JC, Bannikov AF (2000) A new species of the surgeon fish genus Tauichthys from the Eocene of Monte Bolca, Italy (Perciformes, Acanthuridae). Boll Del Mus Civ Di Stor Nat Di Verona 24:29–36

    Google Scholar 

  • Tyler JC, Micklich NR (2011) A new genus and species of surgeon fish (Perciformes, Acanthuridae) from the Oligocene of Kanton Glarus, Switzerland. Swiss J Palaentology 130:203–216

    Article  Google Scholar 

  • Tyler JC, Sorbini L (1998) On the relationships of Eonaso, an Antillean fossil surgeon fish (Acanthuridae). Stud e Ric Sui Giacimenti Terziari Di Bolca, Mus Civ Di Stor Nat Di Verona 7:35–42

    Google Scholar 

  • van Rooij J, Videler J, Bruggemann J (1998) High biomass and production but low energy transfer efficiency of Caribbean parrotfish: implications for trophic models of coral reefs. J Fish Biol 53:154–178

    Article  Google Scholar 

  • Vercelloni J, Liquet B, Kennedy EV, Gonz´alez-Rivero M, Caley MJ, Peterson EE, Puotinen M, Hoegh-Guldberg O, Mengersen K, (2020) Forecasting intensifying disturbance effects on coral reefs. Glob Chang Biol 26:2785–2797

    Article  PubMed  Google Scholar 

  • Vergés A, Bennett S, Bellwood DR (2012) Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison. PLoS ONE 7:e45543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Campbell AH, Ballesteros E, Hoey AS, Vila-Concejo A, Bozec YM, Steinberg PD (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113:13791–13796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergés A, Vanderklift MA, Doropoulos C, Hyndes GA (2011) Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLoS ONE 6:e17115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeij MJA, van Moorselaar I, Engelhard S, Hörnlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae to overgrow coral in the Caribbean. PLoS ONE 5:e14312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vine PJ (1974) Effects of algal grazing and aggressive behaviour of the fishes Pomacentrus lividus and Acanthurus sohal on coral-reef ecology. Mar Biol 24:131–136

    Article  Google Scholar 

  • Vroom PS (2011) “Coral dominance”: a dangerous ecosystem misnomer? J Mar Biol 2011:164127

    Article  Google Scholar 

  • Wakwella A, Mumby PJ, Roff G (2020) Sedimentation and overfishing drive changes in early succession and coral recruitment. Proc R Soc B Biol Sci 287:20202575

    Article  Google Scholar 

  • Wanders JBW (1977) The role of benthic algae in the shallow reef of Curacao (Netherlands Antilles) III: the significance of grazing. Aquat Bot 3:357–390

    Article  Google Scholar 

  • Webster FJ, Babcock RC, Van Keulen M, Loneragan NR (2015) Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia. PLoS ONE 10:e0124162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh JQ, Bellwood DR (2014) Herbivorous fishes, ecosystem function and mobile links on coral reefs. Coral Reefs 33:303–311

    Article  Google Scholar 

  • Welsh JQ, Bellwood DR (2015) Simulated macro-algal outbreak triggers a large-scale response on coral reefs. PLoS ONE 10:e0132895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenger AS, Harris D, Weber S, Vaghi F, Nand Y, Naisilisili W, Hughes A, Delevaux J, Klein CJ, Watson J, Mumby PJ, Jupiter SD (2020) Best-practice forestry management delivers diminishing returns for coral reefs with increased land-clearing. J Appl Ecol 57:2381–2392

    Article  Google Scholar 

  • Wenger AS, Harvey E, Wilson S, Rawson C, Newman SJ, Clarke D, Saunders BJ, Browne N, Travers MJ, Mcilwain JL, Erftemeijer PLA, Hobbs J-PA, Mclean D, Depczynski M, Evans RD (2017) A critical analysis of the direct effects of dredging on fish. Fish Fish 18:967–985

    Article  Google Scholar 

  • Whalan S, Abdul Wahab MA, Sprungala S, Poole AJ, De Nys R (2015) Larval settlement: the role of surface topography for sessile coral reef invertebrates. PLoS ONE 10:e0117675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whinney J, Jones R, Duckworth A, Ridd P (2017) Continuous in situ monitoring of sediment deposition in shallow benthic environments. Coral Reefs 36:521–533

    Article  Google Scholar 

  • Williams DM, Hatcher AI (1983) Structure of fish communities on outer slopes of inshore, mid-shelf and outer shelf reefs of the Great Barrier Reef. Mar Ecol Prog Ser 10:239–250

    Article  Google Scholar 

  • Williams GJ, Graham NAJ, Jouffray JB, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM (2019a) Coral reef ecology in the Anthropocene. Funct Ecol 33:1014–1022

    Article  Google Scholar 

  • Williams ID, Kindinger TL, Couch CS, Walsh WJ, Minton D, Oliver TA (2019b) Can herbivore management increase the persistence of Indo-Pacific coral reefs? Front Mar Sci 6:557

    Article  Google Scholar 

  • Williams ID, Walsh WJ, Claisse JT, Tissot BN, Stamoulis KA (2009) Impacts of a Hawaiian marine protected area network on the abundance and fishery sustainability of the yellow tang, Zebrasoma flavescens. Biol Conserv 142:1066–1073

    Article  Google Scholar 

  • Williamson DH, Russ GR, Ayling AM (2004) No-take marine reserves increase abundance and biomass of reef fish on inshore fringing reefs of the Great Barrier Reef. Environ Conserv 31:149–159

    Article  Google Scholar 

  • Wilson SK (2002) Nutritional value of detritus and algae in blenny territories on the Great Barrier Reef. J Exp Mar Bio Ecol 271:155–169

    Article  Google Scholar 

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanogr Mar Biol an Annu Rev 41:279–309

    Google Scholar 

  • Wilson SK, Burns K, Codi S (2001) Identifying sources of organic matter in sediments from a detritivorous coral reef fish territory. Org Geochem 32:1257–1269

    Article  CAS  Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234

    Article  Google Scholar 

  • Wilson SK, Robinson JPW, Chong-Seng K, Robinson J, Graham NAJ (2019) Boom and bust of keystone structure on coral reefs. Coral Reefs 38:625–635

    Article  Google Scholar 

  • Winterbottom R (1971) Movement of the caudal spine of some surgeonfishes (Acanthuridae, Perciformes). Copeia 3:562–566

    Article  Google Scholar 

  • Winterbottom R (1993) Myological evidence for the Phylogeny of recent genera of surgeonfishes (Percomorpha, Acanthuridae), with comments on the Acanthuroidei. Copeia 1993:21–39

    Article  Google Scholar 

  • Winterbottom R, McLennan DA (1993) Cladogram versality: evolution and biogeography of Acanthuroid fishes. Evolution 47:1557–1571

    PubMed  Google Scholar 

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

  • Wolf NG (1987) Schooling tendency and foraging benefit in the ocean surgeonfish. Behav Ecol Sociobiol 21:59–63

    Article  Google Scholar 

  • Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130

    Article  CAS  Google Scholar 

  • Wylie CR, Paul VJ (1988) Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar Ecol-Prog Ser 45:23–32

    Article  CAS  Google Scholar 

  • Yarlett RT, Perry CT, Wilson RW, Philpot KE (2018) Constraining species-size class variability in rates of parrotfish bioerosion on Maldivian coral reefs: implications for regional-scale bioerosion estimates. Mar Ecol Prog Ser 590:155–169

    Article  Google Scholar 

Download references

Acknowledgements

We thank: JH Choat for data and insightful comments; CR Hemingson for coloured drawings of surgeonfishes; J Woerner, T Saxby, and C Collier for coloured drawings of corals; F Libert, Y-K Tea, and RA Morais for photographs; the Lizard Island Research Staff for field support; two reviewers for their time and for providing insightful and constructive comments; and the Australian Research Council (DRB: CE140100020 and FL190100062), the Ian Potter Foundation (SBT), the Australian Museum’s Lizard Island Research Station (SBT) and an Australian Government Research Training Program Scholarship (SBT) for financial support.

Funding

This research was funded through research grants from the: Australian Research Council (DRB: CE140100020 and FL190100062); Ian Potter Foundation (SBT); Australian Museum’s Lizard Island Research Station (SBT); an Australian Government Research Training Program Scholarship (SBT).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the review, SBT and ACS produced the figures, SBT led the writing and all authors contributed to further revisions.

Corresponding author

Correspondence to Sterling B. Tebbett.

Ethics declarations

Ethics approval

This research was conducted in accordance with James Cook University Animal Ethics approval, numbers A2529 and A2620.

Consent for publication

All authors give their consent for publication.

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 299 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tebbett, S.B., Siqueira, A.C. & Bellwood, D.R. The functional roles of surgeonfishes on coral reefs: past, present and future. Rev Fish Biol Fisheries 32, 387–439 (2022). https://doi.org/10.1007/s11160-021-09692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-021-09692-6

Keywords

Navigation