Skip to main content

Advertisement

Log in

Implications of the depth profile on the functional structure of the fish community of the Perdido Fold Belt, Northwestern Gulf of Mexico

  • Original research
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Studies have demonstrated that environmental conditions affect the richness, diversity, and abundance of fish communities. Depth is an important variable with many species showing preferences for specific depth ranges. Here, we present a functional analysis of the fish community in the Perdido Fold Belt (PFB), Gulf of Mexico. The sampling design was structured across a depth range of 40–3500 m, using 20 oceanographic stations. The aims of our study were: (1) to determine the functional arrangement of the fish community in the PFB; and (2) to describe the effect of the environmental variables on fish richness and functional diversity. A total of 232 species were identified; 195 were grouped into 42 functional groups (FGs). Thirty-seven species did not group with any others and are referred to as “functionally independent species” (FIS). According to our results, depth changes in physicochemical variables allow us to segregate three vertically stratified zones: shelf, slope, and deep. Temperature was the most important environmental variable constraining functional distribution of fishes. The highest FG diversity, species diversity, and biomass were found in the shelf/slope zone (SSo), while the highest diversity of FIS was found in the shelf zone. As the SSo displays its highest diversity, and since greater diversity has been linked with greater resilience and stability of fish communities, the SSo may be the most resilient zone of the PFB. Our study provides the first description of the diversity and resilience of the PFB fish community and helps our understanding of the factors constraining the distribution and functional diversity of fishes across depth gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Medrano R, Arias-Gonzalez E (2018) Functional reef fish groups of the Mexican Caribbean: implications of habitat complexity. Rev Mex Biod 4(89):1–29. https://doi.org/10.22201/ib.20078706e.2018.4.2398

    Article  Google Scholar 

  • Aguilar-Medrano R, Calderón-Aguilera LE (2015) Redundancy and diversity of functional reef fish groups of the Mexican Eastern Pacific. Mar Ecol 37(1):119–133. https://doi.org/10.1111/maec.12253

    Article  Google Scholar 

  • Aguilar-Medrano R, Vega-Cendejas ME (2019) Implications of the environmental heterogeneity on the distribution of the fish functional diversity of the Campeche Bank, Gulf of Mexico. Mar Biodiv 49:1913–1929. https://doi.org/10.1007/s12526-019-00954-y

    Article  Google Scholar 

  • Aguilar-Medrano R, Durand JR, Cruz-Escalona VH, Moyle PB (2019) Fish functional groups in the San Francisco Estuary: understanding new fish assemblages in a highly altered estuarine ecosystem. Estuar, Coast Shelf S 227:106331. https://doi.org/10.1016/j.ecss.2019.106331

    Article  Google Scholar 

  • Andrzejaczek S, Gleiss AC, Pattiaratchi CB, Meekan MG (2019) Patterns and drivers of vertical movements of the large fishes of the epipelagic. Rev Fish Biol Fisheries 29:335–354. https://doi.org/10.1007/s11160-019-09555-1

    Article  Google Scholar 

  • Arim M, Abades SR, Laufer G, Loureiro M, Marquet PA (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. https://doi.org/10.1038/nature02691

    Article  CAS  Google Scholar 

  • Bianchi G (1991) Demersal assemblages of the continental shelf and slope edge between the Gulf of Tehuantepec (Mexico) and the Gulf of Papagayo. Mar Ecol Prog Ser 73:121–140

    Article  Google Scholar 

  • Bierwagen SL, Heupel MR, Chin A, Simpfendorfer CA (2018) Trophodynamics as a tool for understanding coral reef ecosystems. Front Mar Sci 5:24. https://doi.org/10.3389/fmars.2018.00024

    Article  Google Scholar 

  • Bond T, Partridge JC, Taylor MD, Cooper TF, McLean DL (2018) The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. PLoS ONE 13(11):e0207703. https://doi.org/10.1371/journal.pone.0207703

    Article  CAS  Google Scholar 

  • Carney RS (2005) Zonation of deep biota on continental margins. Oceanography and Marine Biology. An Annual Review 43:211–278. https://doi.org/10.1201/9781420037449.ch6

    Article  Google Scholar 

  • Carpenter KE (2002a) The living marine resources of the Western Central Atlantic. Volume 1: Introduction, molluscs, crustaceans, hagfishes, sharks, batoid fishes, and chimaeras. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. FAO, Rome

  • Carpenter KE (2002b) The living marine resources of the Western Central Atlantic. Volume 2: Bony fishes part 1 (Acipenseridae to Grammatidae). FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. FAO, Rome

  • Carpenter KE (2002c) The living marine resources of the Western Central Atlantic. Volume 3: Bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. FAO, Rome

  • Clarke K, Warwick R (1998) Quantifying structural redundancy in ecological communities. Oecologia 113:278–289. https://doi.org/10.1007/s004420050379

    Article  CAS  Google Scholar 

  • Costa C, Cataudella S (2007) Relationship between shape and trophic ecology of selected species of Sparids of the Caprolace coastal lagoon (Central Tyrrhenian Sea). Environ Biol Fishes 78:115–123. https://doi.org/10.1007/s10641-006-9081-9

    Article  Google Scholar 

  • Cruz-Acevedo E, Tolimieri N, Aguirre-Villaseñor H (2018) Deep-sea fish assemblages (300 − 2100 m) in the eastern Pacific off northern Mexico. Mar Ecol Prog Ser 592:225–242. https://doi.org/10.3354/meps12502

    Article  CAS  Google Scholar 

  • Dalben A, Floeter SR (2012) Cryptobenthic reef fishes: depth distribution and correlations with habitat complexity and sea urchins. J Fish Biol 80:852–865. https://doi.org/10.1111/j.1095-8649.2012.03231

    Article  CAS  Google Scholar 

  • Dugard P, Todman J, Staines H (2010) Approaching multivariate analysis. A practical introduction, 2nd edn. Routledge, New York

    Google Scholar 

  • Faith DP, Minchin RM, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Plant Ecol 69:57–68

    Article  Google Scholar 

  • Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  • Froese R, Pauly D (2019) FishBase. World Wide Web electronic publication. www.fishbase.org, version 10/2016. Accessed 02 May 2019

  • Froese R, Palomares MLD, Pauly D (1992) A draft user’s manual of FishBase, a biological database on fish. ICLARM Software 7, International Center for Living Aquatic Resources Management, Manila, Philippines

  • Fujita T, Inada T, Ishito Y (1995) Depth-gradient structure of the demersal fish community on the continental shelf and upper slope off Sendai Bay, Japan. Mar Ecol Prog Ser 118:13–23

    Article  Google Scholar 

  • García-Ríos V, Alpuche-Gual L, Herrera-Silveira J, Montero-Muñoz J, Morales-Ojeda S, Pech D, Cepeda-González MF, Zapata-Pérez O, Gold-Bouchot G (2013) Towards a coastal condition assessment and monitoring of the Gulf of Mexico large marine ecosystem (GoM LME): terminos Lagoon pilot site. Environ Dev 7:72–79. https://doi.org/10.1016/j.envdev.2013.04.007

    Article  Google Scholar 

  • Gratwicke B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66:650–667. https://doi.org/10.1111/j.0022-1112.2005.00629.x

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeo Electronica 4:1–9

    Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210. https://doi.org/10.1016/j.tree.2008.01.003

    Article  Google Scholar 

  • Hoese HD, Moore RH (1998) Fishes of the Gulf of Mexico: Texas. Louisiana and Adjacent Waters. Texas A&M University Press, Texas

    Google Scholar 

  • Hone DWE, Benton MJ (2005) The evolution of large size: how does Cope’s Rule work? Trends Ecol Evol 20:4–6. https://doi.org/10.1016/j.tree.2004.10.012

    Article  Google Scholar 

  • Johnston MW, Bernard AM (2017) A bank divided: quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico. Mar Biol 164:12. https://doi.org/10.1007/s00227-016-3038-0

    Article  Google Scholar 

  • Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierley AS, Hiddink JG, Kaartokallio H, Polunin NVC, Raffaelli DG (2011) The deep sea. In: Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA (eds) Marine ecology: processes, systems and Impacts, 2nd edn. Oxford University Press, Oxford, pp 251–276

    Google Scholar 

  • Klingenberg CP, Barluenga M, Meyer A (2003) Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biol J Linn Soc 80:397–408. https://doi.org/10.1046/j.1095-8312.2003.00246.x

    Article  Google Scholar 

  • Koopman HN, Westgate AJ, Siders ZA, Cahoon LB (2014) Rapid sub-surface ocean warming in the Bay of Fundy as measured by free-swimming basking sharks. Oceanography 27:14–16

    Article  Google Scholar 

  • Kun L, Heshan L, Xuebao H, Yaqin H, Zhong L, Junhuib L, Jianfengb M, Shuyi Z, Longshan L, Jianjunb W, Jund S (2019) Functional trait composition and diversity patterns of marine macrobenthos across the Arctic Bering Sea. Ecol Indic 102:673–685

    Article  Google Scholar 

  • Lalli CM, Parsons TR (1993) Deep sea ecology. In: Lalli CM, Parsons TR (eds) Biological Oceanography: An Introduction. Elsevier Science Ltd, Oxford Pergamon, pp 238–250

    Google Scholar 

  • Last PR, White WT, de Carvalho MR, Séret B, Stehmann MFW, Naylor GJP (2016) Rays of the World. CSIRO Publishing, Clayton

    Book  Google Scholar 

  • Martynova DM, Gordeeva AV (2010) Light-dependent behavior of abundant zooplankton species in the White Sea. J Plankton Res 32(4):441–456. https://doi.org/10.1093/plankt/fbp144

    Article  Google Scholar 

  • McEachran JD, Fechhelm JD (2005a) Fishes of the Gulf of Mexico. Volume I Myxiniformes to Gasterosteiformes, vol I. University of Texas Press, Austin

    Google Scholar 

  • McEachran JD, Fechhelm JD (2005b) Fishes of the Gulf of Mexico, vol II. University of Texas Press, Austin, Scorpaeniformes to Tetraodontiformes

    Google Scholar 

  • Meza-Padilla R, Enriquez C, Liu Y, Appendini CM (2019) Ocean circulation in the western Gulf of Mexico using self-organizing maps. JGR Ocean 124(6):4152–4167

    Google Scholar 

  • Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400

    Article  Google Scholar 

  • Mindel BL, Neat FC, Trueman CN, Webb TJ, Blanchard JL (2016) Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea. PeerJ 4:e2387. https://doi.org/10.7717/peerj.2387

    Article  Google Scholar 

  • Morris JA, Whitfield PE (2009) Biology, ecology, control and management of the invasive Indo-Pacific lionfish: an updated integrated assessment. NOAA Technical Memorandum NOS NCCOS 99, Beaufort

  • Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CET, Renaud J, Thuiller W (2013) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11(5):e1001569

    Article  CAS  Google Scholar 

  • Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M, Chabanet P, Floeter RS, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 38:13757–13762. https://doi.org/10.1073/pnas.1317625111

    Article  CAS  Google Scholar 

  • Myers EMV, Anderson MJ, Eme D, Liggins L, Roberts CD (2019) Changes in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic feeding and light lead to adaptive morphologies of marine fishes. J Anim Ecol 89(2):309–322. https://doi.org/10.1111/1365-2656.13131

    Article  Google Scholar 

  • Neat FC, Campbell N (2013) Proliferation of elongate fishes in the deep sea. J Fish Biol 83:1576–1591. https://doi.org/10.1111/jfb.12266

    Article  CAS  Google Scholar 

  • Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the World, 5th edn. Wiley, New Jersey

    Book  Google Scholar 

  • Nyström M (2006) Redundancy and response diversity of functional groups: implications for the resilience of coral. Ambio 35(1):30–35. https://doi.org/10.1579/0044-7447-35.1.30

    Article  Google Scholar 

  • Orlando-Bonaca M, Lipej L (2007) Factors affecting habitat occupancy of fish assemblage in the Gulf of Trieste (Northern Adriatic Sea). Mar Ecol 26:42–53. https://doi.org/10.1111/j.1439-0485.2005.00037.x

    Article  Google Scholar 

  • Oshima MC, Leaf R (2018) Understanding the structure and resilience of trophic dynamics in the northern Gulf of Mexico using network analysis. Bull Mar Sci 94(1):21–46. https://doi.org/10.5343/bms.2017.1056

    Article  Google Scholar 

  • Patiño-Ruiz J, Rodríguez-Uribe MA, Hernández-Flores ER, Lara-Rodríguez J, Gómez-González AR (2003) El cinturón plegado Perdido mexicano. Estructura y potencial petrolero, Boletín AMGP

    Google Scholar 

  • Pequegnat WE, Gallaway BJ, Pequegnat LH (1990) Aspects of ecology of the deep-water fauna of the Gulf of Mexico. Am Zool 30:45–64

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  Google Scholar 

  • Powell SM, Haedrich RL, McEachran JD (2003) The deep-sea demersal fish fauna of the northern Gulf of Mexico. J Northw Atl Fish Sci 31:19–33. https://doi.org/10.2960/J.v31.a2

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Priede IG (2017) Deep-sea fishes, biology, diversity, ecology and fisheries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Priede IG, Froese R, Bailey DM, Bergstad A, Collins MA, Dyb JE, Henriques C, Jones EG, King N (2006) The absence of sharks from abyssal regions of the world’s oceans. Proc Biol Sci 273(1592):1435–1441. https://doi.org/10.1098/rspb.2005.3461

    Article  Google Scholar 

  • Prugh L, Stoner C, Epps C, BeamW RippleW, Laliberte A, Brashares J (2009) The rise of the mesopredator. Bioscience 59:779–791. https://doi.org/10.1525/bio.2009.59.9.9

    Article  Google Scholar 

  • Robertson DR, Tassell JV (2015) Shorefishes of the Greater Caribbean: online information system. Version 1.0 Smithsonian Tropical Research Institute, Balboa, Panamá

  • Romanuk TN, Hayward A, Hutchings JA (2011) Trophic level scales positively with body size in fishes. Glob Ecol Biogeogr 20:231–240

    Article  Google Scholar 

  • Schlaff AM, Heupel MR, Simpfendorfer CA (2014) Influence of environmental factors on shark and ray movement, behavior and habitat use: a review. Rev Fish Biol Fish 24:1089–1103. https://doi.org/10.1007/s11160-014-9364-8

    Article  Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson-Darling tests. JASA 82:918–924

    Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  Google Scholar 

  • Sokal RR, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38(2):1409–1438

    Google Scholar 

  • Sokal RR, Rohlf FJ (1962) The comparisons of dendrograms by objective methods. Taxon 11:33–40

    Article  Google Scholar 

  • Stefanescu C, Lloris D, Rucabado J (1993) Deep-sea fish assemblages in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Deep-Sea Res 40:695–707. https://doi.org/10.1016/0967-0637(93)90066-C

    Article  Google Scholar 

  • Steneck RS (2001) Functional groups. In: Levin SA (ed) Encyclopedia of Biodiversity. Academic Press, New York, pp 121–139

    Chapter  Google Scholar 

  • Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498

    Article  Google Scholar 

  • Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature. https://doi.org/10.1038/nature12529

    Article  Google Scholar 

  • Taguchi YH, Oono Y (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21:730–740. https://doi.org/10.1093/bioinformatics/bti067

    Article  CAS  Google Scholar 

  • Tang ZH, Huang Q, Wu H, Kuang L, Fu SJ (2017) The behavioral response of prey fish to predators: the role of predator size. PeerJ 5:e3222. https://doi.org/10.7717/peerj.3222

    Article  Google Scholar 

  • Vinogradov ME (1997) Some problems of vertical distribution of Meso- and Macroplankton in the Ocean. Adv Mar Biol 32(32):1–92. https://doi.org/10.1016/S0065-2881(08)60015-2

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Ward CH, Tunnell JW (2017) Habitats and biota of the Gulf of Mexico: an overview. In: Ward CH (ed) Habitats and biota of the Gulf of Mexico: before the deepwater horizon oil spill. Springer Open, pp 1–54

  • Yancey PH (2015) Organic osmolytes in elasmobranchs. In: Shadwick RE, Farrell AP, Brauner CJ (eds) Physiology of elasmobranch fishes: internal processes, vol 34B. Fish Physiology. Academic Press, Cambridge, pp 221–277

    Chapter  Google Scholar 

  • Zintzen V, Anderson MJ, Roberts CD, Harvey ES, Stewart AL (2017) Effects of latitude and depth on the beta diversity of New Zealand fish communities. Sci Rep 7:8081. https://doi.org/10.1038/s41598-017-08427-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research funded by the Mexican National Council for Science and Technology – Mexican Ministry of Energy – Hydrocarbon Fund, Project 201441. Sampling permit PPF/DGOPA-043/18. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM). We acknowledge PEMEX’s specific request to the Hydrocarbon Fund to address the environmental effects of oil spills in the Gulf of Mexico. We are grateful to Mirella Hernández de Santillana and Ariel Chi for their valuable help in the collection and identification of the samples, to Maria D. Blanqueto and Alex Acosta for their technical support in the laboratory, and Ariel Chi for its help with the cartography. RAM and MEVC are fellowships recipients from the Sistema Nacional de Investigadores (CONACyT-SNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Vega-Cendejas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Medrano, R., Vega-Cendejas, M.E. Implications of the depth profile on the functional structure of the fish community of the Perdido Fold Belt, Northwestern Gulf of Mexico. Rev Fish Biol Fisheries 30, 657–680 (2020). https://doi.org/10.1007/s11160-020-09615-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-020-09615-x

Keywords

Navigation