Skip to main content
Log in

Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management

  • Research Paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Growth models describe the change in length or weight as a function of age. Growth curves in tunas can take different forms from relatively simple von Bertalanffy growth curves (Atlantic bluefin, albacore tunas) to more complex two- or three-stanza growth curves (yellowfin, bigeye, skipjack, southern bluefin tunas). We reviewed the growth of the principal market tunas (albacore, bigeye, skipjack, yellowfin and the three bluefin tuna species) in all oceans to ascertain the different growth rates among tuna species and their implications for population productivity and resilience. Tunas are among the fastest-growing of all fishes. Compared to other species, tunas exhibit rapid growth (i.e., relatively high K) and achieve large body sizes (i.e., high L ). A comparison of their growth functions reveals that tunas have evolved different growth strategies. Tunas attain asymptotic sizes (L ), ranging from 75 cm FL (skipjack tuna) to 400 cm FL (Atlantic bluefin tuna), and reach L at different rates (K), varying from 0.95 year−1 (skipjack tuna) to 0.05 year−1 (Atlantic bluefin tuna). Skipjack tuna (followed by yellowfin tuna) is considered the “fastest growing” species of all tunas. Growth characteristics have important implications for population dynamics and fisheries management outcomes since tunas, and other fish species, with faster growth rates generally support higher estimates of Maximum Sustainable Yield (MSY) than species with slower growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam MS (1999) Population dynamics and assessment of skipjack tuna (Katsuwonus pelamis) in the Maldives. Ph. D dissertation, Renewable Resources Assessment Group. Centre for Environmental Technology, T. H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science Technology and Medicine, University of London

  • Adam MS, Stéquert B, Anderson RC (1996) Irregular microincrement deposition on the otoliths of skipjack tuna (Katsuwonus pelamis) from the Maldives. IPTP Coll 9:239–244

    Google Scholar 

  • Aikawa H (1937) Notes on the shoal of bonito along the Pacific coast of Japan. Bull Jap Soc Sci Fish 6 (1):13–21 (In Japanese, translation by Van Campen WG, US Fish Wildl Serv, Spec Sci Rep Fish 83:32-50)

  • Aikawa H, Kato M (1938) Age determination of fish. I. Bull Jap Soc Sci Fish 7(2):79–88 (In Japanese, translation by Van Campen WG, US Fish Wildl Serv, Spec Sci Rep Fish 21)

  • Aires-da-Silva AM, Maunder MN, Schaefer KM, Fuller DW (2015) Improved growth estimates from integrated analysis of direct aging and tag–recapture data: An illustration with bigeye tuna (Thunnus obesus) of the eastern Pacific Ocean with implications for management. Fish Res 163:119–126

    Article  Google Scholar 

  • Allen R (2010) International management of tuna fisheries. Arrangements, challenges and a way forward. FAO Fisheries and Aquaculture Technical Paper. No 536, Rome

  • Amarasiri C, Joseph L (1987) Skipjack tuna (Katsuwonus pelamis)–aspects on the biology and fishery form the western and southern coastal waters of Sri Lanka. IPTP Coll Vol Work Docs 2:1–10

    Google Scholar 

  • Andrade HA, Abreu-Silva JL, Duarte-Pereira M (1984) Crescimento do bonito listrado (Katsuwonus pelamis) e um método para a correcao de vicios decorrentes da vascularizacao central dos espinos das nadadeiras dorsais. Notas Tec FACIMAR 8:83–93

    Google Scholar 

  • Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  PubMed  Google Scholar 

  • Anon (2002) A manual for age determination of southern bluefin Thunnus maccoyii. Otolith sampling, preparation and interpretation. The direct age estimation workshop of the CCSBT, 11–14 June 2002, Queenscliff, Australia

  • Anon (2008) West Sumatra Tuna Tagging Project 2006–2007, Final Report. Technical report

  • Anon (2014) Pacific bluefin tuna and albacore tuna ageing workshop. International Scientific Committee for tuna and tuna-like species in the North Pacific Ocean, 13–16 November, Shimizu, Japan

  • Antoine L, Mendoza J (1986) L’utilisation du rayon de la nageoire dorsale pour l’etude de Ia croissance et l’ecologie du listao. In Symons PEK, Miyake PM, Sakagawa GT (eds) Proceedings of the International Commission for the Conservation of Atlantic Tunas (ICCAT) conference on the international Skipjack year program, international commission for the conservation of atlantic tunas, Madrid, pp 317–324

  • Antoine L, Cayré P, Mendoza J (1982) Etude de Ia croissance du listao (Katsuwonus pelamis) de l’ Atlantique au moyen des rayons de la nageoire dorsale. Mise au point d’une methodologie-resultats preliminaires (in French with English and Spanish summaries). ICCAT Vol Sci Pap 17(1):195–208

  • Arena P, Cefali A, Munao F (1980a) Analysis of the age, weight, length and growth of Thunnus thynnus (L.) captured in Sicilian seas. Mem Biol Mar Ocean 10(5):119–134

    Google Scholar 

  • Arena P, Potoschi A, Cefali A (1980b) Risultati preliminari di studi sull’etá, l’accrescimento a la prima maturitá sessuale dell’alalunga Thunnus alalunga (Bonn., 1788) del Tirreno. Mem Biol Mar Ocean 10(3):71–81

  • Atkinson D (1994) Temperature and organism size: a biological law for ectotherms. Adv Ecol Res 25:158

    Google Scholar 

  • Atkinson D, Sibly RM (1997) Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Bard FX (1984) Croissance de l’albacore (Thunnus albacares) Atlantique d’après les données des marquages. Coll Vol Sci Pap ICCAT 20:104–116

    Google Scholar 

  • Bard FX, Antoine L (1986) Croissance du listao dans l’Atlantique Est. In: Symons PEK, Miyake PM, Sakagawa GT (eds) Proceedings of ICCAT conference on the international skipjack year program, Madrid, pp 301–308

  • Bard FX, Compeán-Jimenez G (1980) Conséquences pour l’évaluation du taux d’explotation du germon (Thunnus alalunga) nord atlantique d’une courbe de croissance déduite de la lecture des sections de rayons épineux. Coll Vol Sci Pap ICCAT 9:365–375

    Google Scholar 

  • Bard F, Chabanet N, Caoude N (1991) Croissance du thon albacore (Thunnus albacares) en Océan Atlantique estimée par marquages. Coll Vol Sci Pap ICCAT 36:182–204

    Google Scholar 

  • Batts BS (1972) Sexual maturity, fecundity and sex ratios of: the skipjack tuna, Katsuwonus pelamis, in North Carolina waters. Chesapeake Sci. 13:193–200

    Article  Google Scholar 

  • Bayliff WH (1988) Growth of skipjack, Katsuwonus pelamis and yellowfin, Thunnus albacares, tunas in the eastern Pacific Ocean, as estimated from tagging data. Inter-Am Trop Tuna Comm Bull 19(4):311–358

    Google Scholar 

  • Bayliff WH, Ishizuka Y, Deriso RB (1991) Growth, movements, and mortality of northern bluefin, Thunnus thynnus, in the Pacific Ocean, as determined from tagging experiments. Bull IATTC 20(1):1–94

    Google Scholar 

  • Bennetti DD, Partridge GJ, Buentello A (2016) Advances in Tuna Aquaculture, from hatchery to market. Elsevier, Oxford

    Google Scholar 

  • Berkeley SA, Hixon MA, Larson RJ, Love MS (2004) Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29:23–32

    Article  Google Scholar 

  • Bhattacharya CG (1967) A simple method of resolution of a distribution into Gaussian components. Biometrics 23:115–135

    Article  CAS  PubMed  Google Scholar 

  • Bigelow HB, Schroeder WC (1953) Fishes in the Gulf of Maine. Fish Bull Wild Ser 53:1–577

    Google Scholar 

  • Bigelow KA, Jones JT, Sierra MM (1993) Age variability within a length-frequency mode of the North Pacific albacore fishery as determined by otolith analysis. In: 13th North Pacific Albacore Workshop. NPALB13/20

  • Bigelow KA, Nishimoto RN, Laurs RM, Wetherall JA (1995) Bias in otolith age estimates of North Pacific albacore due to microscopy limitations. In: 14th North Pacific Albacore workshop. NPALB14/11

  • Birkeland C, Dayton PK (2005) The importance in fishery management of leaving the big ones. Trends Ecol Evol 20:356–358. doi:10.1016/j.tree.2005.03.015

    Article  PubMed  Google Scholar 

  • Boyce D, Tittensor D, Worm B (2008) Effects of temperature on global patterns of tuna and billfish richness. Mar Ecol Prog Ser 355:267–276

    Article  Google Scholar 

  • Brill RW (1996) Selective advantage conferred by the high performance physiology of tunas, billfishes and dolphinfish. Comp Biochem Physiol A Physiol 113A:3–15

    Article  CAS  Google Scholar 

  • Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Fish physiology, vol 19., Tuna–physiology, ecology and evolutionAcademic Press, San Diego, pp 79–120

    Google Scholar 

  • Brock VE (1954) Some aspects of the biology of the aku (Katsuwonus pelamis) in the Hawaiian Islands. Pac Sci 8:94–104

    Google Scholar 

  • Brothers EB, Prince ED, Lee DW (1983) Age and growth of young-of-the-year Bluefin tuna, Thunnus thynnus, from otolith microstructure. In: Prince ED, Pulos LM (eds) Proceedings of the international workshop on age determination of oceanic pelagic fishes: tunas, billfishes, and sharks. US Dep Commer, NOAA Tech Rep NMFS 8:49–59

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brunel T (2010) Age-structure-dependent recruitment: a meta-analysis applied to Northeast Atlantic fish stocks. ICES J Mar Sci 67:1921–1930

    Article  Google Scholar 

  • Brunel T, Piet G (2013) Is age structure a relevant criterion for the health of fish stocks? ICES J Mar Sci 70(2):270–283. doi:10.1093/icesjms/fss184

    Article  Google Scholar 

  • de Bruyn P, Murua H, Aranda M (2013) The Precautionary approach to fisheries management: how this is taken into account by Tuna regional fisheries management organisations (RFMOs). Mar Policy 38:397–406

    Article  Google Scholar 

  • Burgess M, Polasky S, Tilman D (2013) Predicting overfishing and extinction threats in multispecies fisheries. Proc Natl Acad Sci. doi:10.1073/pnas.1314472110

    Google Scholar 

  • Busawon DS, Rodriguez-Marin E, Luque PL, Allman R, Gahagan B, Golet W, Koob E, Siskey M, Ruiz M, Quelle P (2015) Evaluation of an Atlantic bluefin tuna otolith reference collection. Coll Vol Sci Pap ICCAT 71:960–982

    Google Scholar 

  • Bushnell PG, Brill RW (1991) Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas exposed to acute hypoxia, and a model of their cardio-respiratory function. Physiol Zool 64:787–811

    Article  Google Scholar 

  • Butler MJA, Caddy JF, Dickson CA, Hunt JJ, Burnett CD (1977) Apparent age and growth, based on otolith analysis, of giant bluefin tuna (Thunnus thynnus thynnus) in the 1975–76 Canadian catch. Coll Vol Sci Pap ICCAT 6:318–330

    Google Scholar 

  • CCSBT (2011) Report of the sixteenth meeting of the scientific committee. Commission for the Conservation of Southern Bluefin Tuna, 19–28 July, Bali, Indonesia

  • Campana SE (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J Fish Biol 59:197–242

    Article  Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032

    Article  Google Scholar 

  • Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38. doi:10.1139/f00-177

    Article  Google Scholar 

  • Campana SE, Zwanenburg KCT, Smith JN (1990) 210Pb/226Ra determination of longevity in redfish. Can J Fish Aquat Sci 47(1):163–165. doi:10.1139/f90-017

    Article  Google Scholar 

  • Capisano C, Fonteneau A (1991) Analyse des fréquences de longueur, du sex-ratio et des zones de reproduction de l’albacore, Thunnus albacares, de l’Atlantique. Col Vol Sci Pap ICCAT 36:182–204

    Google Scholar 

  • Cardinale M, Arrhenius F (2000) The influence of stock structure and environmental conditions on the recruitment process of Baltic cod estimated using a generalized additive model. Can J Fish Aquat Sci 57(12):2402–2409

    Article  Google Scholar 

  • Carey FG, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Nat Acad Sci USA 56:1464–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlander KD (1987) A history of scale age and growth studies of North American freshwater fishes. In: Summerfelt RC, Hall GE (eds) Age and growth of fish. Iowa State University Press, Ames, pp 3–14

    Google Scholar 

  • Carles Martin CA (1975) Edad y crecimiento del bonito (Katsuwonus pelamis) y la albacora (Thunnus atlanticus) en el parte occidental de Cuba. Cuba Inst Nac Pesca Revista Inves 1(3):203–254

    Google Scholar 

  • Casselman JM (1987) Determination of age and growth. In: Weatherley AH, Gill HS (eds) The biology of fish growth. Academic Press, London, pp 209–242

    Google Scholar 

  • Cayré P (1979) Determination de l’age de listaos, Katsuwonus pelamis, debarques it Dakar; note preliminaire (in French with English and Spanish summaries). International Commission for the Conservation of Atlantic Tunas, Coll Vol Sci Pap 8 (1):196–200

  • Cayré P, Diouf T (1984) Growth of Atlantic bigeye tuna (Thunnus obesus) according to tagging results. Col Vol Sci Pap ICCAT 20:180–187

    Google Scholar 

  • Cayré P, Diouf T, Fonteneau A (1986) Analyse des données de marquages et recaptures de listao (Katsuwonus pelamis) réalisés par le Sénégal et la République du Cap-Vert. In: Symons PEK., Miyake PM, Sakagawa GT (eds) Proceedings of ICCAT conference on the international skipjack year program, Madrid, pp 309–316

  • Chang WYB (1982) A statistical method for evaluating the reproducibility of age determination. Can J Fish Aquat Sci 39:1208–1210

    Article  Google Scholar 

  • Chang SK, Liu HC, Hsu CC (1993) Estimation of vital parameters for Indian albacore through length-frequency data. J Fish Soc Taiwan 20(1):1–17

    Google Scholar 

  • Charnov EL (1993) Life history invariants: some explorations of symmetry in evolutionary ecology. Oxford University Press, Oxford

    Google Scholar 

  • Chen KS, Shimose T, Tanabe T, Chen CY, Hsu CC (2012) Age and growth of albacore Thunnus alalunga in the North Pacific Ocean. J Fish Biol 80:2328–2344

    Article  PubMed  Google Scholar 

  • Cheng Z, Fengying L, Hao T, Liuxiong X, Siquan T (2012) Age and growth of albacore tuna (Thunnus alalunga) in the southern and central Indian Ocean based on Chinese observer data. Working paper IOTC–2012–WPTmT04–16 Rev_1. Indian Ocean Tuna Commission, 4th Session of the Working Party on Temperate Tunas, Shanghai, China

  • Chi KS, Yang RT (1973) Age and growth of skipjack tuna in the waters around the southern part of Taiwan. Nat Taiwan Univ Sci Rep Acta Oceanogr Taiwanica 3:199–221

    Google Scholar 

  • Chur VN, Zharov VL (1983) Determination of age and growth of the skipjack tuna, Katsuwonus pelamis (Scombridae) from the southern part of the Gulf of Guinea. J Ichthyol 23(3):53–67

    Google Scholar 

  • Clear NP, Gunn JS, Rees AJ (2000) Direct validation of annual increments in the otoliths of juvenile southern bluefin tuna, Thunnus maccoyii, by means of a large-scale mark–recapture experiment with strontium chloride. Fish Bull 98:25–40

    Google Scholar 

  • Clear NP, Francis M, Tsuji S, Krusic-Golub K, Itoh T, Tzeng W, Sutton C, Findlay J, Hirai A, Shiao J, Omote K, An D (2002) A manual for age determination of southern bluefin tuna Thunnus maccoyii, Otolith sampling, preparation and interpretation. The direct age estimation workshop of the CCSBT, 11-14 June 2002, Queenscliff, Australia

  • Collette BB, Nauen CE (1983) FAO species catalogue. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fisheries Synop (125), Vol. 2

  • Collette BB, Carpenter KE, Polidoro BA, Juan-Jorda MJ et al (2011) High value and long life: double jeopardy for tunas and billfishes. Science 333:291–292

    Article  CAS  PubMed  Google Scholar 

  • Compeán-Jimenez G, Bard FX (1983) Growth increments on dorsal spines of eastern Atlantic bluefin tuna, Thunnus thynnus, and their possible relation to migration patterns. In: Prince ED, Pulos LM (eds) Proceedings of the international workshop on age determination of oceanic pelagic fishes: tunas, billfishes, and sharks. US Dep Commer, NOAA Tech Rep NMFS 8:77–86

  • Cort JL (1991) Age and growth of the bluefin tuna (Thunnus thynnus) in the Northeast Atlantic. Coll Vol Sci Pap ICCAT 35:213–230

    Google Scholar 

  • Cort JL, Arregui I, Estruch VD, Deguara S (2014) Validation of the growth equation applicable to the eastern Atlantic bluefin tuna, Thunnus thynnus (L.), using Lmax, tag-recapture, and first dorsal spine analysis. Rev Fish Sci Aquac 22(3):239–255. doi:10.1080/23308249.2014.931173

    Article  Google Scholar 

  • Costello C, Ovando D, Hilborn R, Gaines SD, Deschenes O, Lester SE (2012) Status and solutions for the world’s unassessed fisheries. Science 338:517–520

    Article  CAS  PubMed  Google Scholar 

  • Csirke J, Caddy JF, Garcia S (1987) Methods of size-frequency analysis and their incorporation in programs for fish stock assessment in developing countries: FAO interest in receiving advice. In: Pauly D, Morgan GR (eds) Length-based methods in fisheries research. ICLARM conference proceedings 13:1–6

  • Delgado de Molina A, Santana CJ (1986) Estimacion de la edad y crecimiento del patudo (Thunnus obesus, Lowe, 1933) capturado en las islas Canarias. Coll Vol Sci Pap ICCAT 25:130–137

    Google Scholar 

  • Dortel E, Sardenne F, Bousquet N, Rivot E, Million J, Le Croizier G, Chassot E (2015) An integrated Bayesian modeling approach for the growth of Indian Ocean Yellowfin Tuna. Fis Res 163:69–84

    Article  Google Scholar 

  • Draganik B, Pelczarski W (1984) Growth and age of bigeye and yellowfin tuna in the central Atlantic as per data gathered by R/V “Wieczno”. Col Vol Sci Pap ICCAT 20:96–103

    Google Scholar 

  • Drew K, Die DJ, Arocha F (2006) Understanding vascularization in fin spines of white marlin (Tetrapturus albidus). Bull Mar Sci 79:847–852

    Google Scholar 

  • Driggers WB III, Grego JM, Dean JM (1999) Age and growth of yellowfin tuna (Thunnus albacares) in the western north Atlantic Ocean. Coll Vol Sci Pap ICCAT 123:374–383

    Google Scholar 

  • Duarte-Neto P, Higa FM, Lessa RP (2012) Age and growth estimation of bigeye tuna, Thunnus obesus (Teleostei: Scombridae) in the southwestern Atlantic. Neotrop Ichthyol 10:149–158

    Article  Google Scholar 

  • Eveson JP (2011a) Preliminary application of the Brownie-Petersen method to skipjack tag-recapture data. IOTC-2011-WPTT30Rev1

  • Eveson P (2011b) Updated growth estimates for the 1990s and 2000s, and new age-length cut-points for the operating model and management procedures. Working Paper CCSBT-ESC/1107/9, 16th meeting of the Extended Scientific Committee, Commission for the Conservation of Southern Bluefin Tuna, Bali, Indonesia

  • Eveson JP, Million J (2008) Estimation of growth parameters for yellowfin, bigeye and skipjack tuna using tag-recapture data. Working paper IOTC-2008-WPTDA-08, Indian Ocean Tuna Commission, 10th Session of the Working Party on Tropical Tunas, Bangkok

  • Eveson JP, Laslett GM, Polacheck T (2004) An integrated model for growth incorporating tag-recaptured, length-frequency, and direct aging data. Can J Fish Aquat Sci 61:292–306

    Article  Google Scholar 

  • Eveson JP, Polacheck T, Laslett GM (2007) Consequences of assuming an incorrect error structure in von Bertalanffy growth models: a simulation study. Can J Fish Aquat Sci 64:602–617

    Article  Google Scholar 

  • Eveson P, Million J, Sardenne F, Le Croizier G (2012) Updated growth estimates for skipjack, yellowfin and bigeye tuna in the Indian Ocean using the most recent tag-recapture and otolith data. Working paper IOTC-2012-WPTT14-23 Rev_1, Indian Ocean Tuna Commission, 14th Session of the Working Party on Tropical Tunas, Bali, Indonesia

  • Eveson JP, Million J, Sardenne F, Le Croizier G (2015) Estimating growth of tropical tunas in the Indian Ocean using tag-recapture data and otolith-based age estimates. Fis Res 163:58–68

    Article  Google Scholar 

  • Fabens AJ (1965) Properties and fitting of the von Bertalanffy growth curve. Growth 29:265–289

    CAS  PubMed  Google Scholar 

  • Farley JH, Clear NP (2008) Preliminary study of age, growth, and spawning activity of albacore in Australia’s eastern tuna & billfish fishery. Working paper Western and Central Pacific Fishery Commission (WCPFC) WCPFC-SC4-2008/BI-IP-1, 4th scientific committee meeting of the western and central pacific fisheries commission, Port Moresby, Papua New Guinea

  • Farley JH, Gunn JS (2007) Historical changes in juvenile southern bluefin tuna, Thunnus maccoyii, growth rates based on otolith measurements. J Fish Biol 71:852–867

    Article  Google Scholar 

  • Farley J, Clear N, Leroy B, Davis T, McPherson G (2003) Age and growth of bigeye tuna (Thunnus obesus) from the eastern and western AFZ. Final report for Fisheries Research Development Corporation project 2000/100, Canberra

  • Farley JH, Clear NP, Leroy B, Davis TLO, McPherson G (2006) Age, growth and preliminary estimates of maturity of bigeye tuna, Thunnus obesus, in the Australian region. Mar Fresh Res 57:713–724

    Article  Google Scholar 

  • Farley JH, Davis TLO, Gunn JS, Clear NP, Preece AL (2007) Demographic patterns of southern bluefin tuna, Thunnus maccoyii, as inferred from direct ageing data. Fish Res 83:151–161

    Article  Google Scholar 

  • Farley J, Williams A, Clear N, Davies C, Nicol S (2013) Age estimation and validation for South Pacific albacore Thunnus alalunga. J Fish Biol 82:1523–1544

    Article  CAS  PubMed  Google Scholar 

  • Farley JH, Eveson JP, Davis TLO, Andamari R, Proctor CH, Nugraha B, Davies C (2014) Demographic structure, sex ratio and growth rates of southern bluefin tuna (Thunnus maccoyii) on the spawning ground. PLoS ONE 9(5):e96392. doi:10.1371/journal.pone.0096392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrugia A, Rodriguez-Cabello C (2001) Preliminary study on the age estimation of bluefin tuna (Thunnus thynnus, L.) around the Maltese islands. Coll Vol Sci Pap ICCAT 52:771–775

    Google Scholar 

  • Farrugio H (1980) Age et croissance du thon rouge (Thunnus thynnus) dans la pecherie francaise de surface en Mediterranee. Cybium 3e serie (9):45–59

  • Filmalter JD, Weyl OLF, Sauer W (2009) Otoliths and vertebrae as potential hard structures for ageing South African yellowfin tuna Thunnus albacares. Afr J Mar Sci 31:271–276

    Article  Google Scholar 

  • Fonteneau A (1980) Croissance de l’albacore (Thunnus albacares) de l’Atlantique Est. Coll Vol Sci Pap ICCAT 9:152–168

    Google Scholar 

  • Fonteneau A, Chassot E (2013) An overview of yellowfin tuna growth in the Atlantic ocean: Von Bertalanffy or multistanza growth? Coll Vol Sci Pap ICCAT 69(5):2059–2075

    Google Scholar 

  • Fonteneau A, Gascuel D (2008) Growth rates and apparent growth curves, for yellowfin, skipjack and bigeye tagged and recovered in the Indian Ocean during the IOTTP. Working paper IOTC-2008-WPTT-08, Indian Ocean Tuna Commission, 10th Session of the Working Party on Tropical Tunas, Bangkok

  • Foreman T (1996) Estimates of age and growth, and an assessment of ageing techniques, for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. Inter-Amer Trop Tuna Com Bull 21:75–123

    Google Scholar 

  • Foreman T, Ishizuka Y (1990) Giant bluefin tuna off Southern California, with a new California Size Record. Calif Fish Game 76:181–186

  • Fournier DA, Sibert JR, Majkowski J, Hampton J (1990) MULTIFAN: a likelihood based method for estimating growth and age composition from multiple length frequency data sets illustrated using data from southern bluefin tuna (Thunnus maccoyii). Can J Fish Aquat Sci 47:301–313

    Article  Google Scholar 

  • Fournier DA, Hampton J, Sibert JR (1998) MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can J Fish Aquat Sci 55:2105–2116

    Article  Google Scholar 

  • Francis RICC (1988) Maximum likelihood estimation of growth and growth variability from tagging data. NZ J Mar Freshwater Res 22:42–51

    Google Scholar 

  • Francis RICC (1990) Back-calculation of fish length: a critical review. J Fish Biol 36:883–902

    Article  Google Scholar 

  • Francis RICC (1995) The analysis of otolith data—a mathematician’s perspective (what, precisely, is your model?). In Secor DH, Dean JM, Campana SE (eds) Recent developments in fish otolith research. Belle W. Baruch Library in Marine Science 19, University of South Carolina Press, Columbia, pp 81–95

  • Francis RICC (1996) Do herring grow faster than orange roughy? Fish Bull 94(4):783–786

    Google Scholar 

  • Fromentin JM (2006) Size limits regulation for tuna: should we also consider the protection of large fish? Coll Vol Sci Pap ICCAT 59:590–592

    Google Scholar 

  • Fromentin JM, Fonteneau A (2001) Fishing effects and life history traits: a case study comparing tropical versus temperate tunas. Fish Res 53:133–150

    Article  Google Scholar 

  • Fromentin JM, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:281–306

    Article  Google Scholar 

  • Gaertner D, Pagavino M (1991) Observation sur la croissance de l’albacore (Thunnus albacares) dans l’Atlantique Ouest. Coll Vol Sci Pap ICCAT 36:479–505

    Google Scholar 

  • Gaertner D, Delgado de Molina A, Ariz J, Pianet R, Hallie J (2008) Variability of the growth parameters of the skipjack tuna (Katsuwonus pelamis) among areas in the eastern Atlantic: analysis from tagging data within a meta-analysis approach. Aquat Living Resour 21:349–356

    Article  Google Scholar 

  • Gaikov VV, Chur VN, Zharov VL, Fedoseev PYu (1980) On age and growth of the Atlantic bigeye tuna. Col Vol Sci Pap ICCAT 9:294–302

    Google Scholar 

  • Gascuel D, Fonteneau A, Capisano C (1992) Modélisation d’une croissance en deux stances chez l’albacore (Thunnus albacares) de l’Atlantique Est. Aquat Living Resour 5:155–172

    Article  Google Scholar 

  • Geehan J, Fiorellato F, Pierre L (2016) Review of statistical data and fishery trends for tropical tunas. IOTC-2016-WPTT18-07

  • Gilbert DJ (1997) Towards a new recruitment paradigm for fish stocks. Can J Fish Aquat Sci 54:969–977

    Article  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024

    Article  PubMed  Google Scholar 

  • Grewe PM, Elliott NG, Innes BH, Ward RD (1997) Genetic population structure of southern bluefin tuna (Thunnus maccoyii). Mar Biol 127:555–561

    Article  Google Scholar 

  • Gunn JS, Clear NP, Carter TI, Rees AJ, Stanley CA, Farley JH, Kalish JM (2008) Age and growth in southern bluefin tuna, Thunnus maccoyii (Castelnau): direct estimation from otoliths, scales and vertebrae. Fish Res 92:207–220

    Article  Google Scholar 

  • Hallier JP, Gaertner D (2006) Estimated growth rate of the Skipjack tuna (Katsuwonus pelamis) from tagging surveys conducted in the Senegalese area (1996–1999) within a meta-analysis framework Col Vol Soc Pap ICCAT 59(2), 411–420

  • Hallier JP, Stéquert B, Maury O, Bard FX (2005) Growth of bigeye tuna (Thunnus obesus) in the eastern Atlantic Ocean from tagging recapture data and otolith readings. Col Vol Sci Pap ICCAT 57:181–194

    Google Scholar 

  • Hampton J (1991) Estimation of southern bluefin tuna Thunnus maccoyii growth parameters from tagging data, using von Bertalanffy models incorporating individual variation. Fish Bull 89:577–590

    Google Scholar 

  • Hampton J, Bigelow KA, Labelle M (1998) A summary of current information on the biology, fisheries and stock assessment of bigeye tuna (Thunnus obesus) in the Pacific Ocean, with recommendations for data requirements and future research. Secretariat of the Pacific Community, Tech Rep 36, Noumea, New Caledonia, pp 1–46

  • Hamre J (1960) Tuna investigation in Norwegian coastal waters 1954–1958. Ann Biol CIEM 15:197–211

    Google Scholar 

  • Hattour A (1984) Analyse de L’age, de la Croissance et des Captures des Thons Rouges (Thunnus thynnus) et des Thonines (Euthynnus alleteratus L.) peches dans les Eaux tunisiennes. Bull Inst natl sci tech océanogr pêche Salammbô 11:27–61

    Google Scholar 

  • Hearn WS (1986) Mathematical methods for evaluating marine fisheries. PhD Thesis, The University of New South Wales, Kensington, NSW, Australia, 195 p

  • Hearn WS, Polacheck T (2003) Estimating long-term growth-rate changes of southern bluefin tuna (Thunnus maccoyii) from two periods of tag-return data. Fish Bull 101(1):58 74

  • Hilborn R, Walters CJ (1992) Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York

    Book  Google Scholar 

  • Horodysky AZ, Cooke SJ, Graves JE, Brill RW (2016) Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes. Conserv Physiol 4 (1): cov059 doi:10.1093/conphys/cov059

  • Hoyle SD, Leroy BM, Simon JN, Hampton JW (2015) Covariates of release mortality and tag loss in large-scale tuna tagging experiments. Fish Res 163:106–118

    Article  Google Scholar 

  • Hunt JJ, Butler MJA, Berry FH, Mason JM, Wild A (1978) Proceedings of Atlantic Bluefin Tuna ageing workshop. Coll Vol Sci Pap ICCAT 7(2):332–348

    Google Scholar 

  • Hurley PCF, Iles TD (1983) Age and growth estimation of Atlantic Bluefin tuna, Thunnus thynnus, using otoliths. In: Prince ED, Pulos LM (eds) Proceedings of the international workshop on age determination of oceanic pelagic fishes: tunas, billfishes, and sharks. US Dep Commer, NOAA Technical Report NMFS 8:71–75

  • ICCAT (2015) Report of the Standing Committee on Research and Statistics (SCRS). ICCAT Report 2014-2015 (II) Madrid, Spain–28 September to 2 October 2015

  • ISSF (2016) ISSF Tuna Stock Status Update, 2016(5): Status of the world fisheries for tuna. ISSF technical report 2016–2015. International Seafood Sustainability Foundation, Washington, DC, USA

  • Ichinokawa M (2008) Comparison of von Bertalanffy growth function from otolith sections with observed length frequencies from various fisheries. ISC/08/PBF-WG-1/13

  • Itoh T, Tsuji S (1996) Age and growth of juvenile southern bluefin tuna Thunnus maccoyii based on otolith microstructure. Fish Sci 62(6):892–896

    Article  CAS  Google Scholar 

  • Itoh T, Shiina Y, Tsuji S, Endo F, Tezuka N (2000) Otolith daily increment formation in laboratory reared larval and juvenile bluefin tuna Thunnus thynnus. Fish Sci 66:834–839

    Article  CAS  Google Scholar 

  • Jenkins GP, Davis TLO (1990) Age, growth rate, and growth trajectory determined from otolith microstructure of southern bluefin tuna Thunnus maccoyii larvae. Mar Ecol Prog Ser 63:93–104

    Article  Google Scholar 

  • Jennings S, Dulvy NK (2008) Beverton and Holt’s insights into life history theory: influence, application and future use. In: Payne Al, Cotter AJR, Potter ECE (eds) Advances in fisheries Science: 50 years, Beverton and Holt Blackwell Publishing, Oxford, pp 434–450

  • Jennings S, Kaiser MJ, Reynolds JD (2001) Marine fisheries ecology. Blackwell Science Ltd, Malden

    Google Scholar 

  • Jobling M (2002) Environmental factors and rates of development and growth. In: Hart PJB, Reynolds JD (eds) Handbook of fish biology and fisheries, vol 1., fish biologyBlackwell Science Ltd, Malden, pp 97–122

    Chapter  Google Scholar 

  • Joseph J, Calkins TP (1969) Population dynamics of the skipjack tuna Katsuwonus pelamis of the Eastern Pacific Ocean. Bull Inter Amer Trop Tuna Comm 13(1):273p

    Google Scholar 

  • Josse E, Le Guen JC, Kearney R, Lewis A, Smith A, Marec L, Tomlinson PK (1979) Growth of skipjack. Occasional Papers SPC, 11, 83

  • Juan-Jordá MJ, Mosqueira I, Cooper AB, Dulvy NK (2011) Global population trajectories of tunas and their relatives. Proc Natl Acad Sci USA 51:20650–20655

    Article  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013a) The conservation and management of tunas and their relatives: setting life history research priorities. PLoS ONE 8(8):e70405. doi:10.1371/journal.pone.0070405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2013b) Life in 3-D: life history strategies in tunas, mackerels and bonitos. Rev Fish Biol Fish 23:135–155. doi:10.1007/s11160-012-9284-4

    Article  Google Scholar 

  • Juan-Jordá MJ, Mosqueira I, Freire J, Dulvy NK (2015) Population declines of tuna and relatives depend on their speed of life. Proc R Soc B 282:20150322

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalish JM, Beamish RJ, Brothers EB, Casselman JM, Francis RICC, Mosegaard H, Panfili J, Prince ED, Thresher RE, Wilson CA, Wright PJ (1995) Glossary for otolith studies. In: Secor DH, Dean JM, Campana SE (eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, pp 723–729

    Google Scholar 

  • Kalish JM, Johnston JM, Gunn JS, Clear NP (1996) Use of the bomb radiocarbon chronometer to determine age of southern bluefin tuna (Thunnus maccoyii). Mar Ecol Prog Ser 143:1–8

    Article  Google Scholar 

  • Karakulak FS, Özgür E, Gökoğlu M, Emecan İT, Başkaya A (2011) Age and growth of albacore (Thunnus alalunga Bonnaterre, 1788) from the eastern Mediterranean. Turk J Zool. 35(6):801–810

    Google Scholar 

  • Kawasaki T (1965) Ecology and dynamics of the skipjack population 1. Resources and fishing conditions. Jpn Fish Resour Prot Assoc 8-1:1–48. (In Japanese, translation by Miyake MP, Inter-Am Trop Tuna Comm, La Jolla, Calif.)

  • Kayama S, Tanabe T, Ogura M, Okuhara M, Tanaka S, Watanabe Y (2007) Validation of daily ring formation in sagittal otoliths of late juvenile skipjack tuna Katsuwonus pelamis. Fish Sci 73:958–960

    Article  CAS  Google Scholar 

  • Kearney RE (1991) Extremes in fish biology, population dynamics, and fisheries management: Pacific skipjack and Southern bluefin tuna. Rev Aquat Sci 4:289–298

    Google Scholar 

  • Kerandel JA, Leroy B, Kirby DS (2006) Age and growth of albacore by otolith analysis. SPC Oceanic Fisheries Programme Internal Report, Secretariat of the Pacific Community, Noumea

  • Kikkawa B, Cushing J (2001) Variations in growth and mortality of bigeye tuna (Thunnus obesus) in the Equatorial Western Pacific Ocean. Working paper BET-2, 14th meeting of the Standing Committee on Tuna and Billfish, Noumea, New Caledonia

  • King JR, McFarlane GA (2003) Marine fish life history strategies: applications to fisheries management. Fish Manag Ecol 10:249–264

    Article  Google Scholar 

  • Kirkwood GP (1983) Estimation of von Bertalanffy growth curve parameters using both length increment and age-length data. Can J Fish Aquat Sci 40:1405–1411

    Article  Google Scholar 

  • Kitchell JF, Neill WH, Dizon AE, Magnuson JJ (1978). Bioenergetic spectra of skipjack and yellowfin tunas. In: Sharp GD, Dizon, AE (eds) The Physiological Ecology of Tunas. Elsevier

  • Kolody DS, Eveson JP, Hillary RM (2016) Modelling growth in tuna RFMO stock assessments: current approaches and challenges. Fish Res 180:177–193

    Article  Google Scholar 

  • Kopf RK, Drew K, Humphreys RL Jr (2010) Age estimation of billfishes (Kajikia spp.) using fin spine cross-sections: the need for an international code of practice. Aquat Living Resour 23:13–23

    Article  Google Scholar 

  • Kopf RK, Davie PS, Bromhead D, Pepperell JG (2011) Age and growth of striped marlin (Kajikia audax) in the Southwest Pacific Ocean. ICES J Mar Sci 68:1884–1895

    Article  Google Scholar 

  • Korsmeyer KE, Dewar H (2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology, and evolution. Academic Press, San Diego, pp 35–78

    Chapter  Google Scholar 

  • Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comp Biochem Physiol A: Mol Integr Physiol 113:17–24

    Article  Google Scholar 

  • La Mesa M, Sinopoli M, Andaloro F (2005) Age and growth rate of juvenile bluefin tuna Thunnus thynnus from Mediterranean Sea (Sicily, Italy). Sci Mar 69 (2):241–249

  • Labelle M, Hampton J, Bailey K, Murray T, Fournier DA, Sibert JK (1993) Determination of age and growth of South Pacific albacore (Thunnus alalunga) using three methodologies. Fish Bull 91:649–663

    Google Scholar 

  • Landa J, Rodriguez-Marin E, Luque PL, Ruiz M, Quelle P (2015) Growth of bluefin tuna (Thunnus thynnus) in the North-eastern Atlantic and Mediterranean based on back-calculation of dorsal fin spine annuli. Fish Res 170:190–198

    Article  Google Scholar 

  • Lang KL, Grimes CB (1994) Shaw RF (1994) Variations in the age and growth of yellowfin tuna larvae, Thunnus albacares, collected about the Mississippi River plume. Environ Biol Fishes 39(3):259–270

    Article  Google Scholar 

  • Langley A (2016) Stock assessment of bigeye tuna in the Indian Ocean for 2016. Working paper IOTC-2016-WPTT18-20, Indian Ocean Tuna Commission, 18th session of the working party on tropical tunas, Mahe, Seychelles

  • Laslett GM, Eveson JP, Polacheck T (2002) A flexible maximum likelihood approach for fitting growth curves to tag–recapture data. Can J Fish Aquat Sci 59:976–986

    Article  Google Scholar 

  • Laslett GM, Eveson JP, Polacheck T (2004) Fitting growth models to length frequency data. ICES J Mar Sci 61(2):218–230

    Article  Google Scholar 

  • Laurs RM, Nishimoto R, Wetherall JA (1985) Frequency of increment formation on sagittae of North Pacific albacore (Thunnus alalunga). Can J Fish Aquat Sci 42:1552–1555

    Article  Google Scholar 

  • Le Guen J, Sakagawa G (1973) Apparent growth of yellowfin tuna from the eastern Atlantic Ocean. Fish Bull 71:175–187

    Google Scholar 

  • Lee DW, Prince ED, Crow ME (1983) Interpretation of growth bands on vertebrate and otoliths of Atlantic Bluefin Tuna, Thunnus thynnus. NOAA Tech Rep NMFS. 8:61-70

  • Lehodey P, Leroy B (1999) Age and growth of yellowfin tuna (Thunnus albacares) from the western and central Pacific Ocean as indicated by daily growth increments and tagging data. Working paper YFT-2, 12th meeting of the Standing Committee on Tuna and Billfish, Tahiti

  • Lehodey P, Hampton J, Leroy B (1999) Preliminary results on age and growth of bigeye tuna (Thunnus obesus) from the western and central Pacific Ocean as indicated by daily growth increments and tagging data. Working paper BET-2, 12th meeting of the Standing Committee on Tuna and Billfish, Tahiti

  • Leigh GM, Hearn WS (2000) Changes in growth of juvenile southern bluefin tuna (Thunnus maccoyii): an analysis of length-frequency data from the Australian fishery. Mar Freshwat Res 51(2):143–154

    Article  Google Scholar 

  • Leroy B (2000) Preliminary results on skipjack (Katsuwonus pelamis) growth. Working paper SKJ-1, 13th Meeting of the Standing Committee on Tuna and Billfish, Noumea, New Caledonia

  • Leroy B (2001) Use of microincrements analysis to locate annuli in bigeye otoliths. Working paper BET-3, 14th meeting of the standing committee on tuna and Billfish, Noumea

  • Lessa R, Duarte-Neto P (2004) Age and growth of yellowfin tuna (Thunnus albacares) in the western equatorial Atlantic, using dorsal fin spines. Fish Res 69:157–170

    Article  Google Scholar 

  • Longhurst A (2002) Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish Res 56:125–131

    Article  Google Scholar 

  • Lumineau O (2002) Study of the growth of yellowfin tuna (Thunnus albacares) in the Western Indian Ocean based on length frequency data. IOTC Proceedings 5:316–327

    Google Scholar 

  • Luque PL, Rodriguez-Marin E, Ruiz M, Quelle P, Landa J, Macias D, Ortiz de Urbina JM (2014) Direct ageing of Thunnus thynnus from the east Atlantic and western Mediterranean using dorsal fin spines. J Fish Biol 84:1876–1903

    Article  CAS  PubMed  Google Scholar 

  • Magnuson JJ (1978) Locomotion by scombroid fishes: hydromechanics, morphology, and behavior. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Academic Press, New York

    Google Scholar 

  • Marcille J, Stéquert B (1976) Croissance des jeunes albacores (Thunnus albacares) et patudos (Thunnus obesus) de la côte nord-ouest de Madagascar. Cah ORSTOM, Sér Océanogr XIV, pp 153–162

    Google Scholar 

  • Marsac F (1991) Growth of Indian Ocean yellowfin tuna estimated from size frequencies data collected on french purse seiners. Workshop on Stock Assessment of Yellowfin Tuna in the Indian Ocean, Colombo, Sri Lanka, 7–12 October, pp 35–39

  • Marsac F, Lablache G (1985) Preliminary study of the growth of yellowfin (Thunnus albacares) estimated from purse seine data in the western Indian Ocean. In: Expert Consultation on the Stock Assessment of Tunas in the Indian Ocean, Nov 28–Dec 2, Indo-PacTuna Dev Mgmt Programme 31

  • Marshall TC (2009) Implementing information on stock reproductive potential in fisheries management: the motivation, challenges and opportunities. In: Jakobsen T, Fogarty MJ, Megrey BA, Moksness E (eds) Fish reproductive biology: implications for assessment and management. Wiley-Blackwell, Oxford, pp 438–464

    Google Scholar 

  • Marshall T, Kjesbu OS, Yaragina NA, Solemdal P, Ulltang O (1998) Is spawner biomass a sensitive measure of the reproductive and recruitment potential of North-east Arctic cod? Can J Fish Aquatic Sci 55:1766–1783

    Article  Google Scholar 

  • Marshall T, O’Brien L, Tomkiewicz J, Köster FW, Kraus G, Marteinsdottir G, Morgan MJ, Saborido-Rey F, Blanchard JL, Secor DH, Wright PJ, Mukhina NV, Björnsson H (2003) Developing alternative indices of reproductive potential for use in fisheries management: case studies for stocks spanning an information gradient. J Northwest Atl Fish Sci 33:161–190

    Article  Google Scholar 

  • Mather FJ, Mason JM, Jones AC (1995) Historical document: life history and fisheries of Atlantic bluefin tuna. NOAA, Technical Memorandum. NMFS-SEFSC–370

  • Matsumoto WM, Skillman RA, Dizon AE (1984) Synopsis of biological data on skipjack tuna, Katsuwonus pelamis. FAO, Fisheries synopsis no. 136, NOAA Tech. Rep. NMFS Circ. 451

  • Matsuura Y, Andrade HA (2000) Synopsis on biology of skipjack tuna population and related environmental conditions in Brazilian waters. Col Vol Sci Pap ICCAT 51(3):395–401

    Google Scholar 

  • Megalofonou P (2000) Age and growth of Mediterranean albacore. J Fish Biol 57:700–715

    Article  Google Scholar 

  • Megalofonou P (2006) Comparison of otolith growth and morphology with somatic growth and age in young-of-the-year bluefin tuna. J Fish Biol 68(6):1867–1878

    Article  Google Scholar 

  • Megalofonou P, Yannopoulos C, Dean JM (2003) The potential use of scales for estimating age and growth of Mediterranean albacore (Thunnus alalunga). J Appl Ichthyol 19:189–194

    Article  Google Scholar 

  • Moore H (1951) Estimation of age and growth of yellowfin tuna (Neothunnus macropterus) in Hawaiian waters by size frequencies. Fish Bull 52:132–149

    Google Scholar 

  • Morales-Nin B (1992) Determination of growth in bony fishes from otolith microstructure FAO Fisheries Technical Paper. No. 322. Rome, FAO

  • Morales-Nin B, Panfili J (2002) Indirect validation. In: Panfili J, Pontual HD, Troadec H, Wright PJ (eds) Manual of fish sclerochronology, Ifremer-IRD coedition: Brest, France, pp 31–57

  • Morgan MJ, Murua H, Kraus G, Lambert Y, Marteinsdóttir G, Marshall CT, O’Brien L, Tomkiewicz J (2009) The evaluation of reference points and stock productivity in the context of alternative indices of stock reproductive potential. Can J Fishery Aquatic Sci 66:404–414

    Article  Google Scholar 

  • Morize E, Munaron JM, Hallier JP, Million J (2008) Preliminary growth studies of yellowfin and bigeye tuna (Thunnus albacares and T. obesus) in the Indian Ocean by otolith analysis. Working paper IOTC-2008-WPTT-30, Indian Ocean Tuna Commission 10th Session of the Working Party on Tropical Tunas, Bangkok

  • Munro JL, Pauly D (1983) A simple method for comparing the growth of fishes and invertebrates. Fishbyte 1:5–6

    Google Scholar 

  • Murua H, Eveson P, Marsac F (2015) Preface: the Indian Ocean Tuna tagging programme: building better science for more sustainability. Fish Res 163:1–6

    Article  Google Scholar 

  • Murua H, Saborido-Rey F (2003) Female reproductive strategies of commercially important fish species in the North Atlantic. J Northwest Atl Fish Sci 33:23–32

    Article  Google Scholar 

  • Myers RA (1997) Comment and reanalysis: paradigms for recruitment studies. Can J Fish Aquatic Sci 54:978–981

    Article  Google Scholar 

  • Neghli N, Nouar A (2014) Estimation de l’age des spécimens de thon rouge (thunnus thynnus) pêchés sur les côtes algériennes. Coll Vol Sci Pap ICCAT 70(1):232–240

    Google Scholar 

  • Neilson JD, Campana SE (2008) A validated description of age and growth of western Atlantic bluefin tuna (Thunnus thynnus). Can J Fish Aquat Sci 65:1523–1527

    Article  Google Scholar 

  • Neilson JD, Stobo WT, Perley P (2003) Age and growth of Canadian East Coast pollock: comparison of results from otolith examination and mark–recapture studies. Trans Am Fish Soc 132:536–545

    Article  Google Scholar 

  • Olafsdottir D, Ingimundardottir Th (2003) Age-size relationship for bluefin tuna (Thunnus thynnus) caught during feeding migrations to the northern N-Atlantic. Coll Vol Sci Pap ICCAT 55(3):1254–1260

    Google Scholar 

  • Ortiz de Zárate V, Megalofonou P, De Metrio G, Rodríguez-Cabello C (1996) Preliminary age validation results from tagged-recaptured fluorochrome label albacore in North East Atlantic. Coll Vol Sci Pap ICCAT 43:331–338

    Google Scholar 

  • Pagavino M, Gaertner D (1995) Ajuste de una curva de crecimiento a frecuencias de tallas de atun listado (Katsuwonus pelamis) pescado en el Mar Caribe suroriental. Col. Vol. Sci. Pap. ICCAT 44(2):303–309

    Google Scholar 

  • Palomares ML, Pauly D (2008a) Von Bertalanffy growth parameters of non-fish marine organisms. Fisheries Center Research Reports 16 Volume 10

  • Palomares ML, Pauly D (2008b) The growth of jellyfishes. Hydrobiologia 616:11–21

    Article  Google Scholar 

  • Panfili J, Morales-Nin B (2002) Semi-direct validation. In: Panfili J, Pontual HD, Troadec H, Wright PJ (eds) Manual of fish sclerochronology, Ifremer-IRD coedition: Brest, France, pp 31–57

  • Panfili J, de Pontual H, Troadec H, Wright PJ (2002) Manual of Fish Sclerochronology. Ifremer-IRD co-edition, Brest, France

  • Parrack ML, Phares PL (1979) Aspects of growth of Atlantic bluefin tuna determined from mark – recapture data. Coll Vol Sci Pap ICCAT 8(2):356–360

    Google Scholar 

  • Pauly D (1979) Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. Dissertation, Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung (Doctoral Thesis)

  • Pauly D (1981) The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Berichte der Deutschen Wissenschaftlichen Kommission für Meeresforschung 28:251–282

    Google Scholar 

  • Pauly D (1987) A review of the ELEFAN system for analysis of length-frequency data in fish and aquatic invertebrates. In: Pauly D, Morgan GR (eds) Length-based methods in fisheries research. ICLARM conference proceedings 13:7–34

  • Pauly D (1991) Growth performance in fisheries: rigorous description of patterns as a basis for understanding causal mechanisms. ICLARM 4:3–6

    Google Scholar 

  • Pauly D (2010) Gasping fish and panting squids: oxygen, temperature and the growth of water-breathing animals. Excellence in Ecology (22), International Ecology Institute Oldendorf/Luhe, Germany

  • Pauly D, Morgan GR (1987) Length-based methods in fisheries research. Proceeding of ICLARM conference, vol 13

  • Pauly D, Munro JL (1984) Once more on the comparison of growth in fish and invertebrates. Fishbyte 2:1–21

    Google Scholar 

  • Pelczarski W (1992) Differences in age structure and growth rate of yellowfin and bigeye tuna caught with longlines in the Central Atlantic. ICES Pelagic Comm CM 1992/H.12

  • Pinsky ML, Jensen OP, Ricard D, Palumbi SR (2011) Unexpected patterns of fisheries collapse in the world’s oceans. Proc Natl Acad Sci USA 108:8317–8322. doi:10.1073/pnas.1015313108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polacheck T, Eveson JP, Laslett GM (2004) Increase in growth rates of southern bluefin tuna (Thunnus maccoyii) over four decades: 1960 to 2000. Can J Fish Aquat Sci 61(2):307–322

    Article  Google Scholar 

  • Prince ED, Pulos LM (eds.) (1983) Proceedings of the International Workshop on age determination of oceanic pelagic fishes: Tunas, billfishes, and sharks. NOAA Technical Report NMFS no 8

  • Punt AE, Smith DC, Krusic-Golub K, Robertson S (2008) Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australia’s southern and eastern scalefish and shark fishery. Can J Fish Aquat Sci 65:1991–2005

    Article  Google Scholar 

  • Quelle P, Ortiz de Zárate V, Luque PL, Ruiz M, Valeiras X (2011) A review of Mediterranean albacore (Thunnus alalunga) biology and growth studies. Coll Vol Sci Pap ICCAT 66(5):1882–1896

    Google Scholar 

  • Radtke RL (1983) Otolith formation and increment deposition in laboratory-reared skipjack tuna, Euthynnus pelamis, larvae. US Dept Comm, NOAA Tech Rep NMFS, 8:99-103

  • Radtke RL, Morales-Nin B (1989) Mediterranean juvenile bluefin tuna: life history patterns. J Fish Biol 35:485–496

    Article  Google Scholar 

  • Rees AJ, Gunn JS, Clear NP (1996) Age determination of juvenile southern bluefin tuna, Thunnus maccoyii, based on scanning electron microscopy of otolith microincrements (appendix). In: Gunn JS, Clear NP, Rees AJ, Stanley C, Farley JH, Carter T (eds) The direct estimation of age in southern bluefin tuna. Final report to FRDC, Report No 1992/42

  • Reeves SA (2003) A simulation study of the implications of age-reading errors for stock assessment and management advice. ICES J Mar Sci 60:314–328

    Article  Google Scholar 

  • Renck CL, Talley DM, Wells RD, Dewar H (2014) Regional growth patterns of juvenile albacore (Thunnus alalunga) in the eastern North Pacific. Cal Coop Ocean Fish 55:135–143

    Google Scholar 

  • Restrepo VR, Diaz GA, Walter JF, Neilson JD, Campana SE, Secor D, Wingate RL (2010) Updated estimate of the growth curve of Western Atlantic bluefin tuna. Aquat Living Resour 23:335–342

    Article  Google Scholar 

  • Reynolds JD, Dulvy NK, Goodwin NB, Hutchings JA (2005) Biology of extinction risk in marine fishes. Proc R Soc Lond B Biol Sci 272:2337–2344

    Article  Google Scholar 

  • Rivas LR (1976) Variation in sex ratio, size differences between sexes and change in size and age composition in western North Atlantic giant bluefin tuna (Thunnus thynnus). Coll Vol Sci Pap ICCAT 5(2):297–301

    Google Scholar 

  • Rodríguez-Cabello C, Restrepo VR, Rodriguez-Marin E, Cort JL, De la Serna JM (2007) Estimation of north east Atlantic bluefin tuna (Thunnus thynnus) growth parameters from tagging data. Coll Vol Sci Pap ICCAT 60(4):1258–1264

    Google Scholar 

  • Rodriguez-Marin E, Landa J, Ruiz M, Godoy D, Rodriguez-Cabello C (2004) Age estimation of adult bluefin Tuna (Thunnus thynnus) from dorsal spine reading. Coll Vol Sci Pap ICCAT 56(3):1168–1174

    Google Scholar 

  • Rodríguez-Marin E, Clear N, Cort JL, Megafonou P, Neilson JD, Neves dos Santos M, Olafsdottir D, Rodríguez-Cabello C, Ruiz M, Valeiras J (2007) Report of the 2006 ICCAT Workshop for bluefin tuna direct ageing. Coll Vol Sci Pap ICCAT 60(4):1349–1392

    Google Scholar 

  • Rodriguez-Marin E, Ortiz de Urbina JM, Alot E, Cort JL, De la Serna JM, Macias D, Rodríguez-Cabello C, Ruiz M, Valeiras X (2009) Following bluefin tuna cohorts from east Atlantic Spanish fisheries since 1980s. ICCAT Coll Vol Sci Pap 63:121–132

    Google Scholar 

  • Rodríguez-Roda J (1964) Biología del atún, Thunnus thynnus (L.), de la costa sud atlántica de España. Invest Pesq 25:33–139

    Google Scholar 

  • Roff DA (1984) The evolution of life history parameters in teleost. Can J Fish Aquat Sci 41:989–1000

    Article  Google Scholar 

  • Rooker JR, Alvarado Bremer JR, Block BA, Dewar H, De Metrio G, Corriero A, Kraus RT, Prince ED, Rodriguez-Marin E, Secor DH (2007) Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev Fish Sci 15(4):265–310

    Article  Google Scholar 

  • Rothschild BJ (1966) preliminary assessment of the yield potential of the skipjack tuna (Katsuwonus pelamis) in the Central Pacific Ocean. Polyp. BU-215-M

  • Rouyer T (2011) Shifting dynamic forces in fish stock fluctuations triggered by age truncation? Glob Change Biol 17:3046–3057

    Article  Google Scholar 

  • Santamaria N, Bello G, Corriero A, Deflorio M, Vassallo-Agius R, Bök T, De Metrio G (2009) Age and growth of Atlantic bluefin tuna, Thunnus thynnus (Osteichthyes: Thunnidae), in the Mediterranean Sea. J Appl Ichthyol 25:38–45

    Article  Google Scholar 

  • Santamaria N, Bello G, Pousis C, Vassallo-Agius R, de la Gándara F, Corriero A (2015) Fin spine bone resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and comparison between wild and captive-reared specimens. PLoS ONE 10:e0121924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santiago J, Arrizabalaga H (2005) An integrated growth study for North Atlantic albacore (Thunnus alalunga Bonn. 1788). ICES J Mar Sci 62:740–749

    Article  Google Scholar 

  • Sardenne F, Dortel E, Le Croizier G, Million J, Labonne M, Leroy B, Bodin N, Chassot E (2015) Determining the age of tropical tunas in the Indian Ocean from otolith microstructures. Fish Res 163:44–57

    Article  Google Scholar 

  • Schaefer KM (1998) Reproductive biology of yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean. Inter-Am Trop Tuna Comm Bull 21(5):205–221

    Google Scholar 

  • Schaefer KM (2009) Stock structure of bigeye, yellowfin, and skipjack tunas in the eastern Pacific Ocean. IATTC Stock Assessm Rep 9(4):203–221

    Google Scholar 

  • Schaefer KM, Fuller DW (2006) Estimates of age and growth of bigeye tuna (Thunnus obesus) in the eastern Pacific Ocean, based on otolith increments and tagging data. Bull Inter-Am Trop Tuna Comm 23(2):35–76. ISSN: 0074-0993

  • Schindler DE, Essington TE, Kitchell JF, Boggs C, Hilborn R (2002) Sharks and tunas: fisheries impacts on predators with contrasting life histories. Ecol Appl 12(3):735–748

    Article  Google Scholar 

  • Sella M (1929) Migrations and habitat of the tuna (Thunnus thynnus), studied by method of the hooks, with observations on growth, on the operation of the fisheries, etc. (In Italian, translation by Van Campen WG, US Department of the Interior Fish and Wildlife Service. Special Scientific Report: Fisheries vol 76, 20 p)

  • Shabotinets EI (1968) Opredelenie vozraste tuntsov Indiiskogo Okeana (Age determination of Indian Ocean tunas). Trudy VNIRO, 64; Trudy AzcherNIRO, 28:374-376 (In Russian, translated by Klawe WL. Inter-Amer Trop Tuna Comm)

  • Shiha CL, Hsua CC, Chenb CY (2014) First attempt to age yellowfin tuna, Thunnus albacares, in the Indian Ocean, based on sectioned otoliths. Fish Res 149:19–23

    Article  Google Scholar 

  • Shimose T, Ishihara T (2015) A manual for age determination of Pacific bluefin tuna Thunnus orientalis. Bull Fish Res Agen No 40:1–11

    Google Scholar 

  • Shimose T, Tanabe T, Chen KS, Hsu CC (2009) Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fish Res 100:134–139

    Article  Google Scholar 

  • Shingu C (1970) Studies relevant to distribution and migration of southern bluefin tuna. Bull Far Seas Fish Lab (Shimizu) 3:57–114

    Google Scholar 

  • Shuford R, Dean J, Stéquert B, Morize E (2007) Age and growth of yellowfin tuna in the Atlantic Ocean. ICCAT Coll Vol Sci Pap 60:330–341

    Google Scholar 

  • Sibert JR, Kearney RE, Lawson TA (1983) Variation in growth increments of tagged skipjack Katsuwonus pelamis. Tuna and Billfish Assessment Programme. South Pacific Commission, Noumea, Technical Report No. 10

  • Silva A, Carrera P, Massé J, Uriarte A, Santos MB, Oliveira PB, Soares E, Porteiro C, Stratoudakis Y (2008) Geographic variability of sardine growth across the northeastern Atlantic and the Mediterranean Sea. Fish Res 90:56–69

    Article  Google Scholar 

  • Siskey M, Lyubchich V, Liang D, Piccoli P, Secor D (2016) Periodicity of strontium: calcium across annuli further validates otolit.h-ageing for Atlantic bluefin tuna (Thunnus thynnus). Fish Res 177:13–17

    Article  Google Scholar 

  • Smith DC, Fenton GE, Robertson SG, Short SA (1995) Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing. Can J Fish Aquat Sci 52:391–401

    Article  Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Quat Rev Biol 51:3–47

    Article  CAS  Google Scholar 

  • Stergiou KI (2000) Life-history patterns of fishes in the Hellenic Seas. Web Ecol 1(1–10):2000. doi:10.5194/we-1-1-2000

    Google Scholar 

  • Stobberup KA, Marsac F, Anganuzzi AA (1998) A review of the biology of bigeye tuna, Thunnus obesus, and the fisheries for this species in the Indian Ocean. Inter-Amer Trop Tuna Comm Spec Rep 9:81–127

    Google Scholar 

  • Stéquert B, Conand F (2000) Preliminary studies of age and growth of bigeye tuna (Thunnus obesus) in the western Indian Ocean. IOTC Proceedings 3:249–255

    Google Scholar 

  • Stéquert B, Conand F (2004) Age and growth of Bigeye tuna (Thunnus obesus) in the Western Indian Ocean. Cybium 28:163–170

    Google Scholar 

  • Stéquert B, Panfili J, Dean J (1996) Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Fish Bull 94:124–134

    Google Scholar 

  • Sun CL, Huang CL, Yeh SZ (2001) Age and growth of the bigeye tuna Thunnus obesus in the western Pacific Ocean. Fish Bull 99:502–509

    Google Scholar 

  • Tanabe T, Kayama S, Ogura M (2003) Precise age determination of young to adult skipjack tuna (Katsuwonus pelamis) with validation of otolith daily increment. Working paper SJK-8, 16th meeting of the Standing Committee on Tuna and Billfish, Mooloolaba, Australia

  • Tanaka Y, Mohri M, Yamada H (2007) Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thunnus orientalis in the coastal area of the Sea of Japan. Fish Sci 72:534–542

    Article  CAS  Google Scholar 

  • Tankevich PB (1982) Age and growth of bigeye tuna in the Indian Ocean. J Ichthyol 22:26–31

    Google Scholar 

  • Thorogood J (1986) New technique for sampling otoliths of sashimi-grade scombrid fishes. Trans Am Fish Soc 115:913–914

    Article  Google Scholar 

  • Thorogood J (1987) Age and growth rate determination of southern bluefin tuna, Thunnus maccoyii, using otolith banding. J Fish B 30:7–14

    Article  Google Scholar 

  • Timochina OI, Romanov EV (1991) Notes on reproductive biology of yellowfin tuna in the western Indian Ocean. Coll Vol Work Doc, IPTP, TWS/91:60-69.

  • Trippel EA, Kjesbu OS, Solemdal P (1997) Effects of adult age and size structure on reproductive output in marine fishes. In: Chambers RC, Trippel EA (eds) Early life history and recruitment in fish populations. Chapman and Hall, London, pp 31–62

    Chapter  Google Scholar 

  • Turner SC, Restrepo VR (1994) A review of the growth rate of West Atlantic bluefin tuna, Thunnus thynnus, estimated from marked and recaptured fish. Coll Vol Sci Pap ICCAT 42:170–172

    Google Scholar 

  • Uchiyama JH, Struhsaker P (1981) Age and growth of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, as indicated by daily growth increments of sagittae. Fish Bull 79:151–162

    Google Scholar 

  • Venturelli P, Shuter B, Murphy C (2009) Evidence for harvest-induced maternal influences on the reproductive rates of fish populations. Proc R Soc B Biol Sci 276:919–924

    Article  Google Scholar 

  • Vilela H (1960) Estudos sobre a biologia dos atuns do Algarve. Bol de Pesca 69:11–34

    Google Scholar 

  • Vilela MJA, Castello JP (1991) Estudio de la edad y del crecimiento del barrilete Katsuwonus pelamis, en la region Sur y Sudeste de Brasil. Frente Marit. 9:29–35

    Google Scholar 

  • Von Bertalanffy L (1938) A quantitative theory of organic growth (inquires on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Wang YG, Milton DA (2000) On comparison of growth curves: How do we test whether growth rates differ? Fish Bull 98:874–880

    Google Scholar 

  • Wang XF, Xu L, Chen Y, Zhu G, Wang CLJ (2010) Age identification and growth characteristics of Katsuwonus pelamis in western and central Pacific Ocean. Ying Yong Sheng Xue Bao 21(3):756–762

    Google Scholar 

  • Wegner NC, Sepulveda CA, Bull KB, Graham JB (2010) Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: scombrids and billfishes. J Morphol 271:36–49

    Article  PubMed  Google Scholar 

  • Wells RD, Kohin S, Teo SL, Snodgrass OE, Uosaki K (2013) Age and growth of North Pacific albacore (Thunnus alalunga): implications for stock assessment. Fish Res 147:55–62

    Article  Google Scholar 

  • Wild A (1986) Growth of yellowfin tuna, Thunnus albacares, in the eastern Pacific Ocean based on otolith increments. Bull Inter-Am Trop Tuna Comm 18:421–482

    Google Scholar 

  • Wild A, Foreman TJ (1980) The relationship between otolith increments and time for yellowfin and skipjack tuna marked with tetracycline. Inter-Am Trop Tuna Com Bull 17:509–556

    Google Scholar 

  • Wild A, Hampton J (1994) A review of the biology and fisheries for skipjack tuna, Katsuwonus pelamis, in the Pacific Ocean. FAO Fish. Tech. Pap. 336, No. 2

  • Wild A, Wexler JB, Foreman TJ (1995) Extended studies of increment deposition rates in otoliths of yellowfin and skipjack tunas. Bull Mar Sci 57:555–562

    Google Scholar 

  • Williams AJ, Farley JH, Hoyle SD, Davies CR, Nicol SJ (2012) Spatial and sex-specific variation in growth of albacore tuna (Thunnus alalunga) across the South Pacific Ocean. PLoS ONE 7(6):e39318. doi:10.1371/journal.pone.0039318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AJ, Leroy BM, Nicol SJ, Farley JH, Clear NP, Krusic-Golub K, Davies CR (2013) Comparison of daily- and annual- increment counts in otoliths of bigeye (Thunnus obesus), yellowfin (T. albacares), southern bluefin (T. maccoyii) and albacore (T. alalunga) tuna. ICES J Mar Sci 70(3):1439–1450

    Article  Google Scholar 

  • Wilson CA, Beamish RJ, Brothers EB, Carlander KD, Casselman JM, Dean JM, Jearld A, Prince ED Jr, Wild A (1987) Glossary. In: Summerfelt RC, Hall GE (eds) The age and growth of fish. Iowa State University Press, Ames, pp 527–530

    Google Scholar 

  • Wilson JA, Vigliola L, Meekan MG (2009) The back-calculation of size and growth from otoliths: validation and comparison of models at an individual level. J Exp Mar Biol Ecol 368:9–21

    Article  Google Scholar 

  • Winemiller KO (2005) Life history strategies, population regulation, and implications for fisheries management. Can J Fish Aquat Sci 62:872–885

    Article  Google Scholar 

  • Wright PJ, Panfili J, Morales-Nin B, Folkvord A, Mosegaard H, Meunier F (2002) Direct validation. In: Panfili J, Pontual HD, Troadec H, Wright PJ (eds) Manual of fish sclerochronology, ifremer-IRD coedition: Brest, France, pp 31–57

  • Yabuta Y, Yukinawa M, Warashina Y (1960) Growth and age of yellowfin tuna 2: age determination (scale method). Rep Nankai Reg Fish Res Lab 12:63–74

    Google Scholar 

  • Yamanaka KL (1990) Age, growth and spawning of yellowfin tuna in the southern Philippines. Indo-Pac Tuna Dev Mgt Programme IPTP/90/WP/21:1-87

  • Yamasaki I, Doi W, Oshima K, Tanabe T (2010) Research activities for biology on reproduction, ageing, growth and recruitment monitoring of Pacific Bluefin tuna by NRIFSF, Fisheries Research Agency of Japan. ISC/10-1/PBFWG/10

  • Yang R, Nose Y, Hiyama Y (1969) A comparative study on the age and growth of yellowfin tunas from the Pacific and Atlantic Oceans. Far Seas Fish Res Lab Bull 2:1–21

    Google Scholar 

  • Yao M (1981) Growth of skipjack tuna in the western Pacific Ocean. Bull Tohoku Reg Fish Res Lab 43:71–82

    Google Scholar 

  • Yukinawa M (1970) Age and growth of southern bluefin tuna, Thunnus maccoyii (Castlenau) by use of scale. Bull Far Seas Fish Res Lab (Shimizu) 3:229–250

    Google Scholar 

Download references

Acknowledgements

This review is dedicated to those who have invested part of their research studying the growth of tunas; without their effort, time and dedication it would have been not possible to carry out this review. We also would like to thank the Editors of this Special Volume for their guidance and patience. And thanks as well to the two anonymous referees who made many suggestions and critical review to greatly improve the manuscript. This paper is contribution no. 813 from AZTI (Marine Research Division).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilario Murua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murua, H., Rodriguez-Marin, E., Neilson, J.D. et al. Fast versus slow growing tuna species: age, growth, and implications for population dynamics and fisheries management. Rev Fish Biol Fisheries 27, 733–773 (2017). https://doi.org/10.1007/s11160-017-9474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-017-9474-1

Keywords

Navigation