Skip to main content
Log in

Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Mechanistic aspects of oxidation of methane to methanol by methanotrophic bacteria via methane monooxygenase (MMO) is still not well understood. Elucidating how various molecules pertinent to methane oxidation interact with each other at the MMO active site offers critical insights on low-temperature activation of methane, which is one of the greatest technical challenges in hydrocarbon chemistry. In this review, most recent contributions to the area are analyzed comparing soluble (sMMO) and particulate (pMMO) forms. Initially, the taxonomical, morphological and physiological differences of different methanotrophs are discussed. Then, the structural and functional differences of sMMO and pMMO are analyzed while considering substrate/product-cofactor-active site interactions. A docking analysis was performed using Autodock Vina to uncover interactions between cofactors and corresponding enzymes. With natural gas becoming a significant contributor to the energy continuum, this literature analysis and molecular simulations conducted brings new insights to low-temperature activation of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bakan A, Nevins N, Lakdawala AS, Bahar I (2013) Druggability assessment of allosteric proteins by dynamics simulations in presence of probe molecules. Biophys J 104:556a

    Article  Google Scholar 

  • Barik S (2004) When proteome meets genome: the alpha helix and the beta strand of proteins are eschewed by mRNA splice junctions and may define the minimal indivisible modules of protein architecture. J Biosci 29:261–273

    Article  CAS  Google Scholar 

  • Basch H, Mogi K, Musaev DG, Morokuma K (1999) Mechanism of the methane → methanol conversion reaction catalyzed by methane monooxygenase: a density functional study. J Am Chem Soc 121:7249–7256. doi:10.1021/ja9906296

    Article  CAS  Google Scholar 

  • Beauvais LG, Lippard SJ (2005) Reactions of the diiron (IV) intermediate Q in soluble methane monooxygenase with fluoromethanes. Biochem Biophys Res Commun 338:262–266

    Article  CAS  Google Scholar 

  • Best D, Higgins I (1981) Methane-oxidizing activity and membrane morphology in a methanolgrown obligate methanotroph, Methylosinus trichosporium OB3b. Microbiology 125:73–84

    Article  CAS  Google Scholar 

  • Chatwood LL (2004) Structural and mutagenesis studies of soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath). Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Colby J, Dalton H (1976) Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem J 157:495–497

    Article  CAS  Google Scholar 

  • Colby J, Dalton H (1979) Characterization of the second prosthetic group of the flavoenzyme NADH—acceptor reductase (component C) of the methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem J 177:903–908

    Article  CAS  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    Article  CAS  Google Scholar 

  • Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492

    Article  CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc B Biol Sci 360:1207–1222

    Article  CAS  Google Scholar 

  • Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon-utilizing bacteria. Microbiology 61:227–232

    CAS  Google Scholar 

  • De Boer WE, Hazeu W (1972) Observations on the fine structure of a methane-oxidizing bacterium. Antonie Van Leeuwenhoek 38:33–47

    Article  Google Scholar 

  • Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Macmillan, Basingstoke

    Google Scholar 

  • Fox B, Froland W, Dege J, Lipscomb J (1989) Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem 264:10023–10033

    CAS  Google Scholar 

  • Gassner GT, Lippard SJ (1999) Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 38:12768–12785

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Hyder S, Meyers A, Cayer M (1979) Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate. Tissue Cell 11:597–610

    Article  CAS  Google Scholar 

  • Jiang H et al (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Kao W-C et al (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560

    Article  CAS  Google Scholar 

  • Lee SJ, McCormick MS, Lippard SJ, Cho U-S (2013) Control of substrate access to the active site in methane monooxygenase. Nature 494:380–384. http://www.nature.com/nature/journal/v494/n7437/abs/nature11880.html#supplementary-information

  • Lieberman RL et al (2003) Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper and a copper-containing cluster. Proc Natl Acad Sci 100:3820–3825

    Article  CAS  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399

    Article  CAS  Google Scholar 

  • Merkx M, Lippard SJ (2002) Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 277:5858–5865

    Article  CAS  Google Scholar 

  • Merkx M et al (2001) Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew Chem Int Ed 40:2782–2807

    Article  CAS  Google Scholar 

  • Müller J, Lugovskoy AA, Wagner G, Lippard SJ (2002) NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase†. Biochemistry 41:42–51

    Article  Google Scholar 

  • Murray EP, Tsai T, Barnett S (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651

    Article  CAS  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  Google Scholar 

  • Nordlund P (1993) Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:9

    Google Scholar 

  • Sazinsky MH, Lippard SJ (2006) Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Acc Chem Res 39:558–566

    Article  CAS  Google Scholar 

  • Sirajuddin S, Rosenzweig AC (2015) Enzymatic oxidation of methane. Biochemistry 54:2283–2294

    Article  CAS  Google Scholar 

  • Sirajuddin S et al (2014) Effects of zinc on particulate methane monooxygenase activity and structure. J Biol Chem 289:21782–21794

    Article  Google Scholar 

  • Stainthorpe A, Lees V, Salmond GP, Dalton H, Murrell JC (1990) The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91:27–34

    Article  CAS  Google Scholar 

  • Vasil’ev V, Tikhonova T, Gvozdev R, Tukhvatullin I, Popov V (2006) Optimization of solubilization and purification procedures for the hydroxylase component of membrane-bound methane monooxygenase from Methylococcus capsulatus strain M. Biochemistry (Moscow) 71:1329–1335

    Article  Google Scholar 

  • Walters KJ, Gassner GT, Lippard SJ, Wagner G (1999) Structure of the soluble methane monooxygenase regulatory protein B. Proc Natl Acad Sci 96:7877–7882

    Article  CAS  Google Scholar 

  • Wang W, Iacob RE, Luoh RP, Engen JR, Lippard SJ (2014) Electron transfer control in soluble methane monooxygenase. J Am Chem Soc 136:9754–9762

    Article  CAS  Google Scholar 

  • Zhang J, Lipscomb JD (2006) Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation. Biochemistry 45:1459–1469

    Article  CAS  Google Scholar 

  • Zimmermann T, Soorholtz M, Bilke M, Schüth F (2016) Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J Am Chem Soc 138:12395–12400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandun D. Fernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Karthikeyan, R. & Fernando, S.D. Low-temperature biological activation of methane: structure, function and molecular interactions of soluble and particulate methane monooxygenases. Rev Environ Sci Biotechnol 16, 611–623 (2017). https://doi.org/10.1007/s11157-017-9447-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-017-9447-9

Keywords

Navigation