Skip to main content

Advertisement

Log in

Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Hypopituitarism, or the failure to secrete hormones produced by the anterior pituitary (adenohypophysis) and/or to release hormones from the posterior pituitary (neurohypophysis), can be congenital or acquired. When more than one pituitary hormone axis is impaired, the condition is known as combined pituitary hormone deficiency (CPHD). The deficiency may be primarily due to a hypothalamic or to a pituitary disorder, or concomitantly both, and has a negative impact on target organ function. This review focuses on the pathophysiology, diagnosis and management of anterior pituitary hormone deficiency in the pediatric age. Congenital hypopituitarism is generally due to genetic disorders and requires early medical attention. Exposure to toxicants or intrauterine infections should also be considered as potential etiologies. The molecular mechanisms underlying the fetal development of the hypothalamus and the pituitary are well characterized, and variants in the genes involved therein may explain the pathophysiology of congenital hypopituitarism: mutations in the genes expressed in the earliest stages are usually associated with syndromic forms whereas variants in genes involved in later stages of pituitary development result in non-syndromic forms with more specific hormone deficiencies. Tumors or lesions of the (peri)sellar region, cranial radiation therapy, traumatic brain injury and, more rarely, other inflammatory or infectious lesions represent the etiologies of acquired hypopituitarism. Hormone replacement is the general strategy, with critical periods of postnatal life requiring specific attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Shields et al. [2]

Fig. 2
Fig. 3

Reprinted, with permission, from Sykiotis et al. [8]

Similar content being viewed by others

Abbreviations

ACTH:

adrenocorticotropic hormone

ADH:

antidiuretic hormone

a-GSU:

α-subunit of glycoprotein hormones

AMH:

anti-Müllerian hormone

AVP:

arginine-vasopressin

CHARGE:

coloboma of the eye, heart defects, atresia of the nasal choanae, restricted growth and/or development, genital

CPHD:

combined pituitary hormone deficiency

CRH:

corticotropin-releasing hormone

DAVID:

deficient anterior pituitary with variable immune deficiency

DAX1:

DSS-AHC critical region on the X chromosome gene 1

DHEA:

dehydroepiandrosterone

DHEA-S:

dehydroepiandrosterone-sulfate

FSH:

follicle-stimulating hormone

GH:

growth hormone

GH:

somatotropin or growth hormone

GHRH:

GH-releasing hormone

GHRHR:

GH releasing hormone receptor

GnRH:

gonadotropin-releasing hormone

GNRHR:

GnRH receptor

GSHR:

growth hormone secretagogue receptor

hCG:

human chorionic gonadotropin

hCS:

chorionic somatotropin

hGH-V:

placenta growth hormone

IGF1:

insulin-like growth factor 1

IGF2:

insulin-like growth factor 2

IGFBP3:

insulin-like growth factor binding protein 3

IGSF1:

immunoglobulin superfamily member 1

IRS4:

insulin receptor substrate 4

LH:

luteinizing hormone

NCoR-SMRT:

nuclear receptor corepressor-silencing mediator for retinoid and thyroid hormone receptors

OBAIRH:

obesity, adrenal insufficiency, and red hair

PC1:

proprotein convertase-1

PIT1:

Pituitary-specific transcription factor 1

POMC:

proopiomelanocortin

POU1F1:

POU domain class 1 transcription factor 1

PRL:

prolactin

rhGH:

recombinant human GH

TBL1X:

Transducin beta-like X-linked

TBX19:

T-box transcription factor 19

TRH:

TSH-releasing hormone

TRHR:

TRH receptor

TSH:

thyroid-stimulating hormone

TSHB:

TSH beta subunit

References

  1. Alatzoglou KS, Gregory LC, Dattani MT. Development of the Pituitary Gland. Compr Physiol. 2020;10:389–413. https://doi.org/10.1002/cphy.c150043.

    Article  PubMed  Google Scholar 

  2. Shields R, Mangla R, Almast J, Meyers S. Magnetic resonance imaging of sellar and juxtasellar abnormalities in the paediatric population: an imaging review. Insights Imaging. 2015. https://doi.org/10.1007/s13244-015-0401-5. 6:241 – 60.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Larkin S, Ansorge O et al. Development and microscopic anatomy of the pituitary gland. In: Feingold KR, Anawalt B, Blackman MR, eds. Endotext (Internet). South Dartmouth (MA): MDText.com, Inc. 2017; PMID: 28402619.

  4. Katugampola H, Cerbone M, Dattani M. Normal hypothalamic and Pituitary Development and Physiology in the Fetus and Neonate. In: Kovacs CS, Deal C, editors. Materna-fetal and neonatal endocrinology. London, U.K.: Elsevier; 2020. pp. 527–45.

    Chapter  Google Scholar 

  5. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338:161–4. https://doi.org/10.1038/338161a0.

    Article  PubMed  CAS  Google Scholar 

  6. Casoni F, Malone SA, Belle M, et al. Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development. 2016;143:3969–81. https://doi.org/10.1242/dev.139444.

    Article  PubMed  CAS  Google Scholar 

  7. Alvarez-Bolado G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 2019;375:23–39. https://doi.org/10.1007/s00441-018-2859-1.

    Article  PubMed  CAS  Google Scholar 

  8. Sykiotis GP, Pitteloud N, Seminara SB, Kaiser UB, Crowley WF. Jr. Deciphering genetic Disease in the genomic era: the model of GnRH deficiency. Sci Transl Med. 2010;2:32rv2. https://doi.org/10.1126/scitranslmed.3000288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Al Sayed Y, Howard SR. Panel testing for the molecular genetic diagnosis of congenital hypogonadotropic hypogonadism - a clinical perspective. Eur J Hum Genet. 2023. https://doi.org/10.1038/s41431-022-01261-0. 31:387 – 94.

    Article  PubMed  Google Scholar 

  10. Argente J, Perez-Jurado LA. Genetic causes of proportionate short stature. Best Pract Res Clin Endocrinol Metab. 2018;32:499–522. https://doi.org/10.1016/j.beem.2018.05.012.

    Article  PubMed  CAS  Google Scholar 

  11. Jee YH, Baron J. The Biology of Stature. J Pediatr. 2016. https://doi.org/10.1016/j.jpeds.2016.02.068. 173:32 – 8.

  12. Polak M, Luton D. Fetal thyroidology. Best Pract Res Clin Endocrinol Metab. 2014;28:161–73. https://doi.org/10.1016/j.beem.2013.04.013.

    Article  PubMed  CAS  Google Scholar 

  13. Eng L, Lam L. Thyroid function during the fetal and neonatal periods. Neoreviews. 2020;21:e30–e6. https://doi.org/10.1542/neo.21-1-e30.

    Article  PubMed  Google Scholar 

  14. Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6. https://doi.org/10.1056/NEJM198907063210103.

    Article  PubMed  CAS  Google Scholar 

  15. Baquedano MS, Belgorosky A. Human adrenal cortex: epigenetics and postnatal functional zonation. Horm Res Paediatr. 2018;89:331–40. https://doi.org/10.1159/000487995.

    Article  PubMed  CAS  Google Scholar 

  16. Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and implications for Disease. Endocr Rev. 2020;41. https://doi.org/10.1210/endrev/bnaa002.

  17. Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and disorders of Sex Development. Front Endocrinol (Lausanne). 2020;11:211. https://doi.org/10.3389/fendo.2020.00211.

    Article  PubMed  Google Scholar 

  18. Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy, minipuberty. Horm Res Paediatr. 2014;82:73–80. https://doi.org/10.1159/000362414.

    Article  PubMed  CAS  Google Scholar 

  19. Grinspon RP, Urrutia M, Rey RA. Male Central Hypogonadism in Paediatrics – the relevance of follicle-stimulating hormone and sertoli cell markers. Eur Endocrinol. 2018;14:67–71. https://doi.org/10.17925/EE.2018.14.2.67.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Argente J, Dunkel L, Kaiser UB, et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 2023. https://doi.org/10.1016/S2213-8587(22)00339-4. 11:203 – 16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuiri-Hänninen T, Dunkel L, Sankilampi U. Sexual dimorphism in postnatal gonadotrophin levels in infancy reflects diverse maturation of the ovarian and testicular hormone synthesis. Clin Endocrinol (Oxf). 2018;89:85–92. https://doi.org/10.1111/cen.13716.

    Article  PubMed  CAS  Google Scholar 

  22. Ljubicic ML, Madsen A, Upners EN, et al. Longitudinal evaluation of breast tissue in healthy infants: prevalence and relation to reproductive hormones and growth factors. Front Endocrinol (Lausanne). 2022;13:1048660. https://doi.org/10.3389/fendo.2022.1048660.

    Article  PubMed  Google Scholar 

  23. Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med. 2023;25:100881. https://doi.org/10.1016/j.gim.2023.100881.

    Article  PubMed  CAS  Google Scholar 

  24. Jakobsen LK, Jensen RB, Birkebaek NH, et al. Diagnosis and incidence of congenital combined pituitary hormone Deficiency in Denmark-A National Observational Study. J Clin Endocrinol Metab. 2023;108:2475–85. https://doi.org/10.1210/clinem/dgad198.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007. https://doi.org/10.1152/physrev.00006.2006. 87:933 – 63.

    Article  PubMed  Google Scholar 

  26. Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics. 2011;43:1105–16. https://doi.org/10.1152/physiolgenomics.00080.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006. https://doi.org/10.1016/j.cell.2006.10.018. 127:469 – 80.

  28. Youngblood JL, Coleman TF, Davis SW. Regulation of Pituitary Progenitor Differentiation by beta-Catenin. Endocrinology. 2018. https://doi.org/10.1210/en.2018-00563. 159:3287 – 305.

  29. O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995;333:1386–90. https://doi.org/10.1056/NEJM199511233332104.

    Article  PubMed  Google Scholar 

  30. Pépin L, Colin E, Tessarech M, et al. A New Case of PCSK1 pathogenic variant with congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J Clin Endocrinol Metab. 2019;104:985–93. https://doi.org/10.1210/jc.2018-01854.

    Article  PubMed  Google Scholar 

  31. Tauber M, Hoybye C. Endocrine Disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021. https://doi.org/10.1016/S2213-8587(21)00002-4. 9:235 – 46.

    Article  PubMed  Google Scholar 

  32. Patel L, McNally RJ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148:85–8. https://doi.org/10.1016/j.jpeds.2005.07.031.

    Article  PubMed  Google Scholar 

  33. Olson LE, Tollkuhn J, Scafoglio C, et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell. 2006;125:593–605. https://doi.org/10.1016/j.cell.2006.02.046.

    Article  PubMed  CAS  Google Scholar 

  34. Pérez Millán MI, Vishnopolska SA, Daly AZ, et al. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet Genomic Med. 2018. https://doi.org/10.1002/mgg3.395.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bosch IAL, Katugampola H, Dattani MT. Congenital hypopituitarism during the neonatal period: Epidemiology, Pathogenesis, Therapeutic options, and Outcome. Front Pediatr. 2021;8:600962. https://doi.org/10.3389/fped.2020.600962.

    Article  Google Scholar 

  36. Garcia M, Barrio R, Garcia-Lavandeira M, et al. The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFbeta and activin pathways. Sci Rep. 2017;7:42937. https://doi.org/10.1038/srep42937.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fourneaux R, Reynaud R, Mougel G, et al. IGSF1 mutations are the most frequent genetic aetiology of thyrotropin deficiency. Eur J Endocrinol. 2022;187:787–95. https://doi.org/10.1530/EJE-22-0520.

    Article  PubMed  CAS  Google Scholar 

  38. Joustra SD, Heinen CA, Schoenmakers N, et al. IGSF1 Deficiency: lessons from an extensive Case Series and recommendations for Clinical Management. J Clin Endocrinol Metab. 2016;101:1627–36. https://doi.org/10.1210/jc.2015-3880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ohba K, Sasaki S, Matsushita A, et al. GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin beta gene. PLoS ONE. 2011;6:e18667. https://doi.org/10.1371/journal.pone.0018667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lo A, Zheng W, Gong Y, Crochet JR, Halvorson LM. GATA transcription factors regulate LHbeta gene expression. J Mol Endocrinol. 2011;47:45–58. https://doi.org/10.1530/JME-10-0137.

    Article  PubMed  CAS  Google Scholar 

  41. Zhao L, Bakke M, Krimkevich Y, et al. Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development. 2001;128:147–54.

    Article  PubMed  CAS  Google Scholar 

  42. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev. 2003;17:738–47. https://doi.org/10.1101/gad.1065703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vallette-Kasic S, Figarella-Branger D, Grino M, et al. Differential regulation of proopiomelanocortin and pituitary-restricted transcription factor (TPIT), a new marker of normal and adenomatous human corticotrophs. J Clin Endocrinol Metab. 2003;88:3050–6. https://doi.org/10.1210/jc.2002-021934.

    Article  PubMed  CAS  Google Scholar 

  44. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7. https://doi.org/10.1038/509.

    Article  PubMed  CAS  Google Scholar 

  45. Lanting CI, van Tijn DA, Loeber JG, Vulsma T, de Vijlder JJ, Verkerk PH. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics. 2005;116:168–73. https://doi.org/10.1542/peds.2004-2162.

    Article  PubMed  Google Scholar 

  46. Braslavsky D, Mendez MV, Prieto L, et al. Pilot neonatal screening program for central congenital hypothyroidism: evidence of significant detection. Horm Res Paediatr. 2017;88:274–80. https://doi.org/10.1159/000480293.

    Article  PubMed  CAS  Google Scholar 

  47. Lauffer P, Zwaveling-Soonawala N, Naafs JC, Boelen A, van Trotsenburg ASP. Diagnosis and management of Central congenital hypothyroidism. Front Endocrinol (Lausanne). 2021;12:686317. https://doi.org/10.3389/fendo.2021.686317.

    Article  PubMed  Google Scholar 

  48. Heinen CA, Losekoot M, Sun Y, et al. Mutations in TBL1X are Associated with Central Hypothyroidism. J Clin Endocrinol Metab. 2016;101:4564–73. https://doi.org/10.1210/jc.2016-2531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Heinen CA, de Vries EM, Alders M, et al. Mutations in IRS4 are associated with central hypothyroidism. J Med Genet. 2018;55:693–700. https://doi.org/10.1136/jmedgenet-2017-105113.

    Article  PubMed  CAS  Google Scholar 

  50. Jadhav U, Harris RM, Jameson JL. Hypogonadotropic hypogonadism in subjects with DAX1 mutations. Mol Cell Endocrinol. 2011;346:65–73. https://doi.org/10.1016/j.mce.2011.04.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chevrier L, Guimiot F, de Roux N. GnRH receptor mutations in isolated gonadotropic deficiency. Mol Cell Endocrinol. 2011. https://doi.org/10.1016/j.mce.2011.04.018. 346:21 – 8.

    Article  PubMed  Google Scholar 

  52. Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best practice & research. Clinical endocrinology & metabolism 2015; 29:607 – 19. https://doi.org/10.1016/j.beem.2015.07.004.

  53. Valdes-Socin H, Rubio Almanza M, Tomé Fernández-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, Smell, and Neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. Front Endocrinol (Lausanne). 2014;5(109):1–8. https://doi.org/10.3389/fendo.2014.00109.

    Article  Google Scholar 

  54. Szeliga A, Kunicki M, Maciejewska-Jeske M, et al. The genetic backdrop of Hypogonadotropic Hypogonadism. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms222413241.

  55. Hage C, Gan HW, Ibba A, et al. Advances in differential diagnosis and management of growth hormone deficiency in children. Nat Rev Endocrinol. 2021;17:608–24. https://doi.org/10.1038/s41574-021-00539-5.

    Article  PubMed  Google Scholar 

  56. Otte A, Muller HL. Childhood-onset Craniopharyngioma. J Clin Endocrinol Metab. 2021;106:e3820–e36. https://doi.org/10.1210/clinem/dgab397.

    Article  PubMed  Google Scholar 

  57. Sekine S, Shibata T, Kokubu A, et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol. 2002;161:1997–2001. https://doi.org/10.1016/s0002-9440(10)64477-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Müller HL, Gebhardt U, Teske C, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165:17–24. https://doi.org/10.1530/EJE-11-0158.

    Article  PubMed  CAS  Google Scholar 

  59. Mortini P, Losa M, Pozzobon G, et al. Neurosurgical treatment of craniopharyngioma in adults and children: early and long-term results in a large case series. J Neurosurg. 2011;114:1350–9. https://doi.org/10.3171/2010.11.JNS10670.

    Article  PubMed  Google Scholar 

  60. Sala E, Moore JM, Amorin A, et al. Natural history of Rathke’s cleft cysts: a retrospective analysis of a two centres experience. Clin Endocrinol (Oxf). 2018;89:178–86. https://doi.org/10.1111/cen.13744.

    Article  PubMed  Google Scholar 

  61. Siegel DA, King JB, Lupo PJ, et al. Counts, incidence rates, and trends of pediatric cancer in the United States, 2003–2019. J Natl Cancer Inst. 2023;115:1337–54. https://doi.org/10.1093/jnci/djad115.

    Article  PubMed  Google Scholar 

  62. Walker DA, Aquilina K, Spoudeas H, Pilotto C, Gan HW, Meijer L. A new era for optic pathway glioma: a developmental Brain Tumor with life-long health consequences. Front Pediatr. 2023;11:1038937. https://doi.org/10.3389/fped.2023.1038937.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bizzarri C, Bottaro G. Endocrine implications of neurofibromatosis 1 in childhood. Horm Res Paediatr. 2015;83:232–41. https://doi.org/10.1159/000369802.

    Article  PubMed  CAS  Google Scholar 

  64. Chung TT, Monson JP et al. Hypopituitarism. In: Feingold KR, Anawalt B, Blackman MR, eds. Endotext. South Dartmouth (MA). 2022; pp. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278989/.

  65. Vaiani E, Felizzia G, Lubieniecki F, Braier J, Belgorosky A. Paediatric Langerhans Cell Histiocytosis Disease: long-term sequelae in the hypothalamic endocrine system. Horm Res Paediatr. 2021;94:9–17. https://doi.org/10.1159/000517040.

    Article  PubMed  CAS  Google Scholar 

  66. Bhatia S, Tonorezos ES, Landier W. Clinical care for people who survive Childhood Cancer: a review. JAMA. 2023;330:1175–86. https://doi.org/10.1001/jama.2023.16875.

    Article  PubMed  Google Scholar 

  67. Darzy KH, Shalet SM. Hypopituitarism as a consequence of brain tumours and radiotherapy. Pituitary. 2005;8:203–11.

    Article  PubMed  Google Scholar 

  68. van Iersel L, Mulder RL, Denzer C, et al. Hypothalamic-pituitary and other Endocrine Surveillance among Childhood Cancer survivors. Endocr Rev. 2022;43:794–823. https://doi.org/10.1210/endrev/bnab040.

    Article  PubMed  Google Scholar 

  69. Nishi Y, Hamamoto K, Fujita N, Okada S. Empty sella/pituitary atrophy and endocrine impairments as a consequence of radiation and chemotherapy in long-term survivors of childhood Leukemia. Int J Hematol. 2011;94:399–402. https://doi.org/10.1007/s12185-011-0939-z.

    Article  PubMed  CAS  Google Scholar 

  70. Howell JC, Rose SR. Pituitary Disease in pediatric Brain Tumor survivors. Expert Rev Endocrinol Metab. 2019;14:283–91. https://doi.org/10.1080/17446651.2019.1620599.

    Article  PubMed  CAS  Google Scholar 

  71. Constine LS, Woolf PD, Cann D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors [published erratum appears in N Engl J Med 1993;328(16):1208] [see comments]. N Engl J Med. 1993;328:87–94.

    Article  PubMed  CAS  Google Scholar 

  72. Darzy KH, Shalet SM. Circadian and stimulated Thyrotropin Secretion in Cranially Irradiated Adult Cancer survivors. J Clin Endocrinol Metab. 2005;90:6490–7.

    Article  PubMed  CAS  Google Scholar 

  73. Jensterle M, Jazbinsek S, Bosnjak R, et al. Advances in the management of craniopharyngioma in children and adults. Radiol Oncol. 2019. https://doi.org/10.2478/raon-2019-0036. 53:388 – 96.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Harrabi SB, Adeberg S, Welzel T, et al. Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal Tumor control with minimal side effects. Radiat Oncol. 2014;9:203. https://doi.org/10.1186/1748-717X-9-203.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Iersel L, van Santen HM, Potter B, et al. Clinical impact of hypothalamic-pituitary disorders after conformal radiation therapy for pediatric low-grade glioma or ependymoma. Pediatr Blood Cancer. 2020;67:e28723. https://doi.org/10.1002/pbc.28723.

    Article  PubMed  CAS  Google Scholar 

  76. Bishop AJ, Greenfield B, Mahajan A, et al. Proton Beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int J Radiat Oncol Biol Phys. 2014;90:354–61. https://doi.org/10.1016/j.ijrobp.2014.05.051.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Beltran C, Roca M, Merchant TE. On the benefits and risks of proton therapy in pediatric craniopharyngioma. Int J Radiat Oncol Biol Phys. 2012;82:e281–7. https://doi.org/10.1016/j.ijrobp.2011.01.005.

    Article  PubMed  Google Scholar 

  78. Cerbone M, Dattani MT. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency. Growth horm. IGF Res. 2017;37:19–25. https://doi.org/10.1016/j.ghir.2017.10.005.

    Article  CAS  Google Scholar 

  79. Lu M, Ye J, Gao F. Analysis of clinical features of primary empty sella. Ann Endocrinol (Paris). 2023. https://doi.org/10.1016/j.ando.2023.01.003. 84:249 – 53.

    Article  PubMed  Google Scholar 

  80. Rogol AD. Emotional deprivation in children: growth faltering and reversible hypopituitarism. Front Endocrinol (Lausanne). 2020;11. https://doi.org/10.3389/fendo.2020.596144.

  81. Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17:251–67. https://doi.org/10.1016/S1474-4422(18)30024-3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reincke M, Fleseriu M, Cushing Syndrome. Rev JAMA. 2023. https://doi.org/10.1001/jama.2023.11305. 330:170 – 81.

    Article  Google Scholar 

  83. Casano-Sancho P. Pituitary dysfunction after traumatic brain injury: are there definitive data in children? Arch Dis Child. 2017;102:572–7. https://doi.org/10.1136/archdischild-2016-311609.

    Article  PubMed  Google Scholar 

  84. Husebye ES, Pearce SH, Krone NP, Kampe O. Adrenal insufficiency. Lancet. 2021. https://doi.org/10.1016/S0140-6736(21)00136-7. 397:613 – 29.

    Article  PubMed  Google Scholar 

  85. Bautista G. Overview of congenital hypopituitarism for the neonatologist. Neoreviews. 2022;23:e300–e10. https://doi.org/10.1542/neo.23-5-e300.

    Article  PubMed  Google Scholar 

  86. Ogilvy-Stuart AL. Growth hormone deficiency (GHD) from birth to 2 years of age: diagnostic specifics of GHD during the early phase of life. Horm Res. 2003;60:2–9. https://doi.org/10.1159/000071219.

    Article  PubMed  CAS  Google Scholar 

  87. Binder G, Weidenkeller M, Blumenstock G, Langkamp M, Weber K, Franz AR. Rational approach to the diagnosis of severe growth hormone deficiency in the newborn. J Clin Endocrinol Metab. 2010;95:2219–26. https://doi.org/10.1210/jc.2009-2692.

    Article  PubMed  CAS  Google Scholar 

  88. Clément F, Grinspon RP, Yankelevich D, et al. Development and validation of a prediction rule for growth hormone Deficiency without need for pharmacological stimulation tests in children with risk factors. Front Endocrinol (Lausanne). 2021;11. https://doi.org/10.3389/fendo.2020.624684.

  89. Salvatori R, Fan X, Phillips JA 3, et al. Three new mutations in the gene for the growth hormone (gh)-releasing hormone receptor in familial isolated gh deficiency type Ib. J Clin Endocrinol Metab. 2001;86:273–9. https://doi.org/10.1210/jcem.86.1.7156.

  90. Braslavsky D, Keselman A, Galoppo M, et al. Neonatal cholestasis in congenital pituitary hormone deficiency and isolated hypocortisolism: characterization of liver dysfunction and follow-up. Arq Bras Endocrinol Metabol. 2011;55:622–7. https://doi.org/10.1590/s0004-27302011000800017.

    Article  PubMed  Google Scholar 

  91. de Weerth C, Zijl RH, Buitelaar JK. Development of cortisol circadian rhythm in infancy. Early Hum Dev. 2003;73:39–52. https://doi.org/10.1016/s0378-3782(03)00074-4.

    Article  PubMed  Google Scholar 

  92. Ballerini MG, Chiesa A, Scaglia P, Gruneiro-Papendieck L, Heinrich JJ, Ropelato MG. 17alpha-hydroxyprogesterone and cortisol serum levels in neonates and young children: influence of age, gestational age, gender and methodological procedures. J Pediatr Endocrinol Metab. 2010;23:121–32. https://doi.org/10.1515/jpem.2010.23.1-2.121.

    Article  PubMed  CAS  Google Scholar 

  93. Lamolet B, Pulichino AM, Lamonerie T, et al. A pituitary cell-restricted T box factor, tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell. 2001;104:849–59. https://doi.org/10.1016/s0092-8674(01)00282-3.

    Article  PubMed  CAS  Google Scholar 

  94. Domené HM, Gruñeiro-Papendieck L, Chiesa A, et al. The C105fs114X is the prevalent thyrotropin beta-subunit gene mutation in Argentinean patients with congenital central hypothyroidism. Horm Res. 2004;61:41–6. https://doi.org/10.1159/000075196.

    Article  PubMed  CAS  Google Scholar 

  95. Boelen A, Zwaveling-Soonawala N, Heijboer AC, van Trotsenburg ASP. Neonatal screening for primary and central congenital hypothyroidism: is it time to go Dutch? Eur Thyroid J. 2023;12. https://doi.org/10.1530/ETJ-23-0041.

  96. Grinspon RP, Loreti N, Braslavsky D, et al. Spreading the clinical window for diagnosing fetal-onset hypogonadism in boys. Front Endocrinol. 2014;5:51. https://doi.org/10.3389/fendo.2014.00051.

    Article  Google Scholar 

  97. Lukas-Croisier C, Lasala C, Nicaud J, et al. Follicle-stimulating hormone increases testicular Anti-Müllerian hormone (AMH) production through sertoli cell proliferation and a nonclassical cyclic adenosine 5’-monophosphate-mediated activation of the AMH gene. Mol Endocrinol. 2003;17:550–61. https://doi.org/10.1210/me.2002-0186.

    Article  PubMed  CAS  Google Scholar 

  98. Lambert AS, Bougnères P. Growth and descent of the testes in infants with hypogonadotropic hypogonadism receiving subcutaneous gonadotropin infusion. Int. J. Pediatr. Endocrinol. 2016; 2016:13. https://doi.org/10.1186/s13633-016-0031-9.

  99. Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–64. https://doi.org/10.1038/nrendo.2015.112.

    Article  PubMed  Google Scholar 

  100. Quinton R, Mamoojee Y, Jayasena CN, et al. Society for Endocrinology UK guidance on the evaluation of suspected disorders of sexual development: emphasizing the opportunity to predict adolescent pubertal failure through a neonatal diagnosis of absent minipuberty. Clin Endocrinol (Oxf). 2017;86:305–6. https://doi.org/10.1111/cen.13257.

    Article  PubMed  Google Scholar 

  101. Bergadá I, Milani C, Bedecarrás P, et al. Time course of the serum gonadotropin surge, inhibins, and anti-mullerian hormone in normal newborn males during the first month of life. J Clin Endocrinol Metab. 2006;91:4092–8. https://doi.org/10.1210/jc.2006-1079.

    Article  PubMed  CAS  Google Scholar 

  102. Johannsen TH, Main KM, Ljubicic ML, et al. Sex differences in Reproductive hormones during Mini-puberty in infants with Normal and Disordered Sex Development. J Clin Endocrinol Metab. 2018;103:3028–37. https://doi.org/10.1210/jc.2018-00482.

    Article  PubMed  Google Scholar 

  103. Busch AS, Ljubicic ML, Upners EN, et al. Dynamic changes of reproductive hormones in male minipuberty: temporal dissociation of Leydig- and sertoli-cell activity. J Clin Endocrinol Metab. 2022. https://doi.org/10.1210/clinem/dgac115.

    Article  PubMed  Google Scholar 

  104. Braslavsky D, Grinspon RP, Ballerini MG, et al. Hypogonadotropic hypogonadism in infants with congenital hypopituitarism: a challenge to diagnose at an early stage. Horm Res Paediatr. 2015;84:289–97. https://doi.org/10.1159/000439051.

    Article  PubMed  CAS  Google Scholar 

  105. Rey RA, Grinspon RP, Gottlieb S, et al. Male hypogonadism: an extended classification based on a developmental, endocrine physiology-based approach. Andrology. 2013;1:3–16. https://doi.org/10.1111/j.2047-2927.2012.00008.x.

    Article  PubMed  CAS  Google Scholar 

  106. Kuiri-Hänninen T, Kallio S, Seuri R, et al. Postnatal developmental changes in the pituitary-ovarian axis in preterm and term infant girls. J Clin Endocrinol Metab. 2011;96:3432–9. https://doi.org/10.1210/jc.2011-1502.

    Article  PubMed  CAS  Google Scholar 

  107. Ljubicic ML, Busch AS, Upners EN, et al. A biphasic pattern of Reproductive hormones in Healthy Female infants -the COPENHAGEN Minipuberty Study. J Clin Endocrinol Metab. 2022. https://doi.org/10.1210/clinem/dgac363.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Di Iorgi N, Allegri AE, Napoli F, et al. The use of neuroimaging for assessing disorders of pituitary development. Clin Endocrinol (Oxf). 2012. https://doi.org/10.1111/j.1365-2265.2011.04238.x. 76:161 – 76.

    Article  PubMed  Google Scholar 

  109. Mushtaq T, Ali SR, Boulos N, et al. Emergency and perioperative management of adrenal insufficiency in children and young people: British Society for Paediatric Endocrinology and Diabetes consensus guidance. Arch Dis Child. 2023;108:871–8. https://doi.org/10.1136/archdischild-2022-325156.

    Article  PubMed  Google Scholar 

  110. Jonklaas J, Bianco AC, Bauer AJ, et al. Guidelines for the treatment of hypothyroidism: prepared by the American thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24:1670–751. https://doi.org/10.1089/thy.2014.0028.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227:R51–71. https://doi.org/10.1530/JOE-15-0341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Hatipoğlu N, Kurtoğlu S, Micropenis. Etiology, diagnosis and treatment approaches. J Clin Res Pediatr Endocrinol. 2013;5:217–23. https://doi.org/10.4274/Jcrpe.1135.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rey RA. Recent advancement in the treatment of boys and adolescents with hypogonadism. Ther. Adv Endocrinol Metab. 2022;13:20420188211065660. https://doi.org/10.1177/20420188211065660.

    Article  Google Scholar 

  114. Society GHR. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab. 2000;85:3990–3. https://doi.org/10.1210/jcem.85.11.6984.

    Article  Google Scholar 

  115. Chaler EA, Ballerini G, Lazzati JM, et al. Cut-off values of serum growth hormone (GH) in pharmacological stimulation tests (PhT) evaluated in short-statured children using a chemiluminescent immunometric assay (ICMA) calibrated with the international recombinant human GH Standard 98/574. Clin Chem Lab Med. 2013;51:e95–7. https://doi.org/10.1515/cclm-2012-0505.

    Article  PubMed  CAS  Google Scholar 

  116. Yuen KCJ, Johannsson G, Ho KKY, Miller BS, Bergada I, Rogol AD. Diagnosis and testing for growth hormone deficiency across the ages: a global view of the accuracy, caveats, and cut-offs for diagnosis. Endocr Connect. 2023;12. https://doi.org/10.1530/EC-22-0504.

  117. Takahashi Y, Kaji H, Okimura Y, Goji K, Abe H, Chihara K. Brief report: short stature caused by a mutant growth hormone. N Engl J Med. 1996;334:432–6.

    Article  PubMed  CAS  Google Scholar 

  118. Godi M, Mellone S, Petri A, et al. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J Clin Endocrinol Metab. 2009;94:3939–47. https://doi.org/10.1210/jc.2009-0833.

    Article  PubMed  CAS  Google Scholar 

  119. Pantel J, Legendre M, Cabrol S, et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J Clin Invest. 2006;116:760–8. https://doi.org/10.1172/JCI25303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Acerini CL, Segal D, Criseno S, et al. Shared decision-making in growth hormone therapy-implications for patient care. Front Endocrinol (Lausanne). 2018;9:688. https://doi.org/10.3389/fendo.2018.00688.

    Article  PubMed  Google Scholar 

  121. Hou L, Huang K, Gong C, et al. Long-term Pegylated GH for Children with GH Deficiency: a large, prospective, real-world study. J Clin Endocrinol Metab. 2023;108:2078–86. https://doi.org/10.1210/clinem/dgad039.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miller BS, Blair JC, Rasmussen MH, et al. Effective GH replacement with Somapacitan in Children with GHD: REAL4 2-year results and after switch from Daily GH. J Clin Endocrinol Metab. 2023;108:3090–9. https://doi.org/10.1210/clinem/dgad394.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Savendahl L, Battelino T, Hojby Rasmussen M, et al. Weekly Somapacitan in GH Deficiency: 4-Year efficacy, Safety, and Treatment/Disease Burden results from REAL 3. J Clin Endocrinol Metab. 2023;108:2569–78. https://doi.org/10.1210/clinem/dgad183.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zadik Z, Zelinska N, Iotova V, et al. An open-label extension of a phase 2 dose-finding study of once-weekly somatrogon vs. once-daily Genotropin in children with short stature due to growth hormone deficiency: results following 5 years of treatment. J Pediatr Endocrinol Metab. 2023;36:261–9. https://doi.org/10.1515/jpem-2022-0359.

    Article  PubMed  CAS  Google Scholar 

  125. van Trotsenburg P, Stoupa A, Leger J, et al. Congenital hypothyroidism: a 2020–2021 Consensus guidelines Update-An ENDO-European Reference Network Initiative endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid. 2021;31:387–419. https://doi.org/10.1089/thy.2020.0333.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Clement K, Dubern B, Mencarelli M, et al. Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab. 2008;93:4955–62. https://doi.org/10.1210/jc.2008-1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Bitencourt MR, Batista RL, Biscotto I, Carvalho LR. Central adrenal insufficiency: who, when, and how? From the evidence to the controversies - an exploratory review. Arch Endocrinol Metab. 2022;66:541–50. https://doi.org/10.20945/2359-3997000000493.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ballerini MG, Freire AV, Rodriguez ME, et al. Diagnostic accuracy of morning salivary cortisol in the assessment of the hypothalamic-pituitary-adrenal axis recovery after prolonged corticosteroid therapy in children. Horm Res Paediatr. 2023;1. https://doi.org/10.1159/000530939.

  129. Noe S, von Werder A, Iakoubov R, et al. Dynamics of Adrenocorticotropin after Application of Metyrapone. Exp Clin Endocrinol Diabetes. 2017. https://doi.org/10.1055/s-0042-117832. 125:53 – 6.

    Article  PubMed  Google Scholar 

  130. Grinspon RP, Freire AV, Rey RA. Hypogonadism in Pediatric Health: Adult Medicine concepts fail. Trends Endocrinol Metab. 2019. https://doi.org/10.1016/j.tem.2019.08.002. 30:879 – 90.

    Article  PubMed  Google Scholar 

  131. Camilletti MA, Martinez Mayer J, Vishnopolska SA, Perez-Millan MI. From pituitary stem cell differentiation to Regenerative Medicine. Front Endocrinol (Lausanne). 2021;11:614999. https://doi.org/10.3389/fendo.2020.614999.

    Article  PubMed  Google Scholar 

  132. Gergics P, Smith C, Bando H, et al. High-throughput splicing assays identify missense and silent splice-disruptive POU1F1 variants underlying pituitary hormone deficiency. Am J Hum Genet. 2021;108:1526–39. https://doi.org/10.1016/j.ajhg.2021.06.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Vishnopolska SA, Mercogliano MF, Camilletti MA, et al. Comprehensive Identification of pathogenic gene variants in patients with neuroendocrine disorders. J Clin Endocrinol Metab. 2021;106:1956–76. https://doi.org/10.1210/clinem/dgab177.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sani I, Albanese A. Endocrine long-term Follow-Up of children with neurofibromatosis type 1 and Optic Pathway Glioma Horm. Res Paediatr. 2017;87:179–88. https://doi.org/10.1159/000458525.

    Article  CAS  Google Scholar 

  135. Martínez AS, Domené HM, Ropelato MG, et al. Estrogen priming effect on growth hormone (GH) provocative test: a useful tool for the diagnosis of GH deficiency. J Clin Endocrinol Metab. 2000;85:4168–72. https://doi.org/10.1210/jcem.85.11.6928.

    Article  PubMed  Google Scholar 

  136. Grimberg A, DiVall SA, Polychronakos C, et al. Guidelines for growth hormone and insulin-like Growth Factor-I treatment in children and adolescents: growth hormone Deficiency, Idiopathic Short stature, and primary insulin-like Growth Factor-I Deficiency. Horm Res Paediatr. 2016;86:361–97. https://doi.org/10.1159/000452150.

    Article  PubMed  CAS  Google Scholar 

  137. Harrington J, Palmert MR. An Approach to the patient with delayed puberty. J Clin Endocrinol Metab. 2022;107:1739–50. https://doi.org/10.1210/clinem/dgac054.

    Article  PubMed  Google Scholar 

  138. Grinspon RP. Genetics of congenital central hypogonadism. Best Pract Res Clin Endocrinol Metab. 2022;101599. https://doi.org/10.1016/j.beem.2021.101599.

  139. Raivio T, Miettinen PJ. Constitutional delay of puberty versus congenital hypogonadotropic hypogonadism: Genetics, management and updates. Best Pract Res Clin Endocrinol Metab. 2019;33:101316. https://doi.org/10.1016/j.beem.2019.101316.

    Article  PubMed  CAS  Google Scholar 

  140. Aung Y, Kokotsis V, Yin KN, et al. Key features of puberty onset and progression can help distinguish self-limited delayed puberty from congenital hypogonadotrophic hypogonadism. Front Endocrinol (Lausanne). 2023;14. https://doi.org/10.3389/fendo.2023.1226839.

  141. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–303. https://doi.org/10.1136/adc.44.235.291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23. https://doi.org/10.1136/adc.45.239.13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Grinspon RP, Ropelato MG, Gottlieb S, et al. Basal follicle-stimulating hormone and peak gonadotropin levels after gonadotropin-releasing hormone infusion show high diagnostic accuracy in boys with suspicion of hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2010;95:2811–8. https://doi.org/10.1210/jc.2009-2732.

    Article  PubMed  CAS  Google Scholar 

  144. Degros V, Cortet-Rudelli C, Soudan B, Dewailly D. The human chorionic gonadotropin test is more powerful than the gonadotropin-releasing hormone agonist test to discriminate male isolated hypogonadotropic hypogonadism from constitutional delayed puberty. Eur J Endocrinol. 2003;149:23–9.

    Article  PubMed  CAS  Google Scholar 

  145. Harrington J, Palmert MR. Clinical review: distinguishing constitutional delay of growth and puberty from isolated hypogonadotropic hypogonadism: critical appraisal of available diagnostic tests. J Clin Endocrinol Metab. 2012;97:3056–67. https://doi.org/10.1210/jc.2012-1598. https://doi.org/jc.2012-1598 [pii].

    Article  PubMed  CAS  Google Scholar 

  146. Kohva E, Varimo T, Huopio H, et al. Anti-mullerian hormone and letrozole levels in boys with constitutional delay of growth and puberty treated with letrozole or testosterone. Hum Reprod. 2020;35:257–64. https://doi.org/10.1093/humrep/dez231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Chaudhary S, Walia R, Bhansali A, et al. FSH stimulated inhibin B (FSH-iB): a novel marker for the accurate prediction of pubertal outcome in delayed puberty. J Clin Endocrinol Metab. 2021;106:e3495–e505. https://doi.org/10.1210/clinem/dgab357.

    Article  PubMed  Google Scholar 

  148. Lopez Dacal J, Castro S, Suco S, Correa Brito L, Grinspon RP, Rey RA. Assessment of testicular function in boys and adolescents. Clin Endocrinol (Oxf. 2023. https://doi.org/10.1111/cen.14979.

    Article  PubMed  Google Scholar 

  149. Cassatella D, Howard SR, Acierno JS, et al. Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur J Endocrinol. 2018;178:377–88. https://doi.org/10.1530/EJE-17-0568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Amato LGL, Montenegro LR, Lerario AM, et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur J Endocrinol. 2019. https://doi.org/10.1530/EJE-18-0764. 181:103 – 19.

    Article  PubMed  Google Scholar 

  151. Federici S, Goggi G, Quinton R, et al. New and Consolidated Therapeutic Options for Pubertal Induction in Hypogonadism: In-depth review of the literature. Endocr Rev. 2022;43:824–51. https://doi.org/10.1210/endrev/bnab043.

    Article  PubMed  Google Scholar 

  152. Voutsadaki K, Matalliotakis M, Ladomenou F. Hypogonadism in adolescent girls: treatment and long-term effects. Acta Biomed. 2022;93:e2022317. https://doi.org/10.23750/abm.v93i5.13719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Rey RA. Considerations when treating male pubertal delay pharmacologically. Expert Opin Pharmacother. 2022. https://doi.org/10.1080/14656566.2022.2138743. 23:1903-14.

    Article  PubMed  Google Scholar 

  154. Zacharin M. Pubertal induction in hypogonadism: current approaches including use of gonadotrophins. Best Pract Res Clin Endocrinol Metab. 2015. https://doi.org/10.1016/j.beem.2015.01.002. 29:367 – 83.

    Article  PubMed  Google Scholar 

  155. Burt E, Davies MC, Yasmin E, et al. Reduced uterine volume after induction of puberty in women with hypogonadism. Clin Endocrinol (Oxf). 2019;91:798–804. https://doi.org/10.1111/cen.14092.

    Article  PubMed  CAS  Google Scholar 

  156. Gong C, Liu Y, Qin M, Wu D, Wang X. Pulsatile GnRH is Superior to hCG in therapeutic efficacy in adolescent boys with Hypogonadotropic Hypogonadodism. J Clin Endocrinol Metab. 2015;100:2793–9. https://doi.org/10.1210/jc.2015-1343.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

No funding was received for the preparation of this review.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the literature; RAR prepared the first draft. All authors edited the text and approved the final version.

Corresponding author

Correspondence to Rodolfo A. Rey.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, R.A., Bergadá, I., Ballerini, M.G. et al. Diagnosing and treating anterior pituitary hormone deficiency in pediatric patients. Rev Endocr Metab Disord (2023). https://doi.org/10.1007/s11154-023-09868-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-023-09868-4

Keywords

Navigation