Skip to main content
Log in

Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) epigenetic modifications have recently gained attention in a plethora of complex diseases, including polycystic ovary syndrome (PCOS), a common cause of infertility in women of reproductive age. Herein we discussed mtDNA epigenetic modifications and their impact on nuclear-mitochondrial interactions in general and the latest advances indicating the role of mtDNA methylation in the pathophysiology of PCOS. We highlighted epigenetic changes in nuclear-related mitochondrial genes, including nuclear transcription factors that regulate mitochondrial function and may be involved in the development of PCOS or its related traits. Additionally, therapies targeting mitochondrial epigenetics, including time-restricted eating (TRE), which has been shown to have beneficial effects by improving mitochondrial function and may be mediated by epigenetic modifications, have also been discussed. As PCOS has become a major metabolic disorder and a risk factor for obesity, cardiometabolic disorders, and diabetes, lifestyle/behavior intervention using TRE that reinforces feeding-fasting rhythms without reducing caloric intake may be a promising therapeutic strategy for attenuating the pathogenesis. Furthermore, future perspectives in the area of mitochondrial epigenetics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-hmC:

5 Hydroxymethylcytosine

5-mC:

5-methylcytosine

5-MTHF:

5-methyl tetrahydrofolate

αKG:

Alpha-ketoglutarate

AMP:

Adenosine Monophosphate

AMPK:

AMP-activated protein kinase

ATP:

Adenosine Triphosphate

BHMT:

Betaine homocysteine methyltransferase

D-loop:

Displacement loop

DNMT:

DNA methyltransferase

DNMT1:

DNA methyltransferase 1

DNMT3:

DNA methyltransferase 3

D NMT3A:

DNA methyltransferase 3 alpha

DNMT3B:

DNA methyltransferase 3 Beta

DNMT3L:

DNA methyltransferase 3 Like

ETC:

Electron transport chain

GNMT:

Glycine N-methyltransferase

Hcy:

Homocysteine

IVF:

In-vitro fertilization

MBE:

Mitochondrial bifunctional enzyme

Met:

Methionine

miRNA:

micro-RNAs

MS:

Methionine synthase

mtDNA:

Mitochondrial DNA

mTERFs:

Mitochondrial transcription termination factors

MTHF:

Methyl tetrahydrofolate

MTS:

Mitochondrial targeting sequence

nDNA:

Nuclear DNA

ncRNA:

non-coding RNAs

NRF-1:

Nuclear respiratory factor 1

NRF-2:

Nuclear respiratory factor 2

OXPHOS:

Oxidative Phosphorylation

PCOS:

Polycystic ovary syndrome

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator

PGT-A:

Preimplantation genetic testing for aneuploidies

POLRMT:

Mitochondrial RNA polymerase

PPAR:

Peroxisome proliferator-activated receptors

PPARG:

Peroxisome Proliferator-Activated Receptor Gamma

PPARGC1A:

Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Alpha

PPARGC1B:

Peroxisome Proliferator-activated Receptor Gamma Coactivator-1 Beta

PPARD:

Peroxisome Proliferator-Activated Receptor Delta

ROS:

Reactive Oxygen Species

rRNA:

Ribosomal ribonucleic acid

SAM:

S-adenosylmethionine

SAMC:

SAM carrier

SIRTs:

Sirtuins

TCA:

Tricarboxylic acid cycle

TET:

Ten-eleven translocation

TFAM:

Mitochondrial transcription Factor A

TFB2M:

Mitochondrial transcription Factor B2

THF:

Tetrahydrofolate

TRE:

Time-restricted eating

tRNA:

Transfer ribonucleic acid

References

  1. Duarte FV, Amorim JA, Palmeira CM, Rolo AP. Regulation of mitochondrial function and its impact in metabolic stress. Curr Med Chem. 2015;22:2468–79.

    Article  CAS  PubMed  Google Scholar 

  2. Shukla P, Mukherjee S. Mitochondrial dysfunction: an emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion. 2020;52:24–39.

    Article  CAS  PubMed  Google Scholar 

  3. Shukla P, Mukherjee S, Patil A. Identification of variants in mitochondrial D-Loop and OriL region and analysis of mitochondrial DNA copy number in women with polycystic ovary syndrome. DNA Cell Biol. 2020;39:1458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma N, Pasala MS, Prakash A, Mitochondrial DNA. Epigenetics and environment. Environ Mol Mutagen. 2019;60:668–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem. 2006;281:25791–802.

    Article  CAS  PubMed  Google Scholar 

  6. Walker BR, Moraes CT. Nuclear-mitochondrial interactions. Biomolecules. 2022;12:427.

  7. Patil V, Cuenin C, Chung F, Aguilera JRR, Fernandez-Jimenez N, Romero-Garmendia I, et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res. 2019;47:10072–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghosh S, Sengupta S, Scaria V. Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion. 2014;18:58–62.

    Article  CAS  PubMed  Google Scholar 

  9. van der Wijst MG, Rots MG. Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet TIG. 2015;31:353–6.

    Article  PubMed  Google Scholar 

  10. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA. 2011;108:3630–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genom. 2015;47:299–307.

    Article  CAS  Google Scholar 

  12. Bellizzi D, D’Aquila P, Scafone T, Giordano M, Riso V, Riccio A, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20:537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manev H, Dzitoyeva S. Progress in mitochondrial epigenetics. Biomol Concepts. 2013;4:381–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh S, Sengupta S, Scaria V. Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion. 2016;27:25–31.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012;52:23–35.

    Article  CAS  PubMed  Google Scholar 

  16. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metabol. 2017;25:27–42.

    Article  CAS  Google Scholar 

  17. Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol. 2020;219:e201907022.

  18. Agrimi G, Di Noia MA, Marobbio CM, Fiermonte G, Lasorsa FM, Palmieri F. Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J. 2004;379:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gusic M, Prokisch H, ncRNAs. New players in mitochondrial health and disease? Front Genet. 2020;11:95.

  20. A FCL. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics. 2020;12:182.

    Article  Google Scholar 

  21. Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, et al. The mitochondrial genome encodes abundant small non-coding RNAs. Cell Res. 2013;23:759–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci. 2022;47:645–59.

    Article  CAS  PubMed  Google Scholar 

  23. Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion. 2013;13:577–91.

    Article  CAS  PubMed  Google Scholar 

  24. Shukla P, Singh KK. Uncovering mitochondrial determinants of racial disparities in ovarian cancer. Trends in cancer. 2021;7:93–7.

    Article  CAS  PubMed  Google Scholar 

  25. Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics. 2012;7:326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther. 2008;7:1182–90.

    Article  CAS  PubMed  Google Scholar 

  27. Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics. 2012;4:17–27.

    Article  CAS  PubMed  Google Scholar 

  28. Kelly RD, Rodda AE, Dickinson A, Mahmud A, Nefzger CM, Lee W, et al. Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells. 2013;31:703–16.

    Article  CAS  PubMed  Google Scholar 

  29. Wiese M, Bannister AJ. Two genomes, one cell: mitochondrial-nuclear coordination via epigenetic pathways. Mol Metab. 2020;38:100942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49–54.

    Article  CAS  PubMed  Google Scholar 

  31. Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25:1354–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93:884s–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharmacol. 2011;206:163–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cavalcante GC, Magalhães L, Ribeiro-Dos-Santos Â, Vidal AF. Mitochondrial epigenetics: non-coding RNAs as a novel layer of complexity. Int J Mol Sci. 2020;21:1838.

  35. Dennett CC, Simon J. The role of polycystic ovary syndrome in reproductive and metabolic health: overview and approaches for treatment. Diabetes Spectr. 2015;28:116–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Toosy S, Sodi R, Pappachan JM. Lean polycystic ovary syndrome (PCOS): an evidence-based practical approach. J Diabetes Metab Disord. 2018;17:277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kosova G, Urbanek M. Genetics of the polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373:29–38.

    Article  CAS  PubMed  Google Scholar 

  38. Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-nuclear communication by mitochondrial metabolites and its regulation by B-Vitamins. Front Physiol. 2019;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Babayev E, Seli E. Oocyte mitochondrial function and reproduction. Curr Opin Obst Gynecol. 2015;27:175–81.

    Article  Google Scholar 

  40. Jia L, Li J, He B, Jia Y, Niu Y, Wang C, et al. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries. Sci Rep. 2016;6:19436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia L, Zeng Y, Hu Y, Liu J, Yin C, Niu Y, et al. Homocysteine impairs porcine oocyte quality via deregulation of one-carbon metabolism and hypermethylation of mitochondrial DNA†. Biol Reprod. 2019;100:907–16.

    Article  PubMed  Google Scholar 

  42. Zhao H, Zhao Y, Ren Y, Li M, Li T, Li R, et al. Epigenetic regulation of an adverse metabolic phenotype in polycystic ovary syndrome: the impact of the leukocyte methylation of PPARGC1A promoter. Fertil Steril. 2017;107:467–74.e5.

    Article  CAS  PubMed  Google Scholar 

  43. Skov V, Glintborg D, Knudsen S, Jensen T, Kruse TA, Tan Q, et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56:2349–55.

    Article  CAS  PubMed  Google Scholar 

  44. Lambertini L, Saul SR, Copperman AB, Hammerstad SS, Yi Z, Zhang W, et al. Intrauterine reprogramming of the polycystic ovary syndrome: evidence from a pilot study of cord blood global methylation analysis. Front Endocrinol. 2017;8:352.

    Article  Google Scholar 

  45. Kokosar M, Benrick A, Perfilyev A, Fornes R, Nilsson E, Maliqueo M, et al. Epigenetic and transcriptional alterations in human adipose tissue of polycystic ovary syndrome. Sci Rep. 2016;6:22883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic insight into polycystic ovary syndrome-an overview. Int J Mol Sci. 2020;21:4853.

  48. Liu R, Bai S, Zheng S, Zhu X, Zhang Y, Xu B, et al. Identification of the metabolomics signature of human follicular fluid from PCOS women with insulin resistance. Dis Markers. 2022;2022:6877541.

    PubMed  PubMed Central  Google Scholar 

  49. Chen H, Dzitoyeva S, Manev H. Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol. 2012;690:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci. 2011;31:16619–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asemi Z, Karamali M, Esmaillzadeh A. Metabolic response to folate supplementation in overweight women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Mol Nutr Food Res. 2014;58:1465–73.

    Article  CAS  PubMed  Google Scholar 

  52. Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347:1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Longo VD, Panda S, Fasting. Circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23:1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melkani GC, Panda S. Time-restricted feeding for prevention and treatment of cardiometabolic disorders. J Physiol. 2017;595:3691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Villanueva JE, Livelo C, Trujillo AS, Chandran S, Woodworth B, Andrade L, et al. Time-restricted feeding restores muscle function in Drosophila models of obesity and circadian-rhythm disruption. Nat Commun. 2019;10:2700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Livelo C, Guo Y, Melkani GC. A skeletal muscle-centric view on time-restricted feeding and obesity under various metabolic challenges in humans and animals. Int J Mol Sci. 2022;24:422. 

  58. Sardon Puig L, Valera-Alberni M, Cantó C, Pillon NJ. Circadian rhythms and mitochondria: connecting the dots. Front Genet. 2018;9:452.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li C, Xing C, Zhang J, Zhao H, Shi W, He B. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome. J Transl Med. 2021;19:148.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr. 2019;39:291–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bordoni L, Petracci I, Mlodzik-Czyzewska M, Malinowska AM, Szwengiel A, Sadowski M, et al. Mitochondrial DNA and epigenetics: investigating interactions with the one-carbon metabolism in obesity. Oxidative Med Cell Longev. 2022;2022:9171684.

    Article  Google Scholar 

  62. Konopka AR, Asante A, Lanza IR, Robinson MM, Johnson ML, Dalla Man C, et al. Defects in mitochondrial efficiency and H2O2 emissions in obese women are restored to a lean phenotype with aerobic exercise training. Diabetes. 2015;64:2104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cui N, Wang H, Wang W, Zhang J, Xu Y, Jiang L et al. Impact of body mass index on outcomes of in vitro fertilization/intracytoplasmic sperm injection among polycystic ovarian syndrome patients. Cell Physiol Biochem. 2016;39:1723–34.

  64. Parikh FR, Athalye AS, Naik NJ, Naik DJ, Sanap RR, Madon PF. Preimplantation genetic testing: its evolution, where are we today? J Hum Reprod Sci. 2018;11:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cagnone GL, Tsai TS, Makanji Y, Matthews P, Gould J, Bonkowski MS, et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci Rep. 2016;6:23229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the necessary support provided by the Indian Council of Medical Research-National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH) (Rev/1297/08-2022).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the writing, critically edited each version of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Pallavi Shukla.

Ethics declarations

Ethics approval

NA.

Conflict of interest

The authors declared no financial or non-finacial interest involved with this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Melkani, G.C. Mitochondrial epigenetic modifications and nuclear-mitochondrial communication: A new dimension towards understanding and attenuating the pathogenesis in women with PCOS. Rev Endocr Metab Disord 24, 317–326 (2023). https://doi.org/10.1007/s11154-023-09789-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09789-2

Keywords

Navigation