Skip to main content

Advertisement

Log in

Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is a preventable risk factor for cerebrovascular disorders and it is associated with cerebral grey and white matter changes. Specifically, individuals with obesity show diminished grey matter volume and thickness, which seems to be more prominent among fronto-temporal regions in the brain. At the same time, obesity is associated with lower microstructural white matter integrity, and it has been found to precede increases in white matter hyperintensity load. To date, however, it is unclear whether these findings can be attributed solely to obesity or whether they are a consequence of cardiometabolic complications that often co-exist with obesity, such as low-grade systemic inflammation, hypertension, insulin resistance, or dyslipidemia. In this narrative review we aim to provide a comprehensive overview of the potential impact of obesity and a number of its cardiometabolic consequences on brain integrity, both separately and in synergy with each other. We also identify current gaps in knowledge and outline recommendations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from García-García et al. [8]). B Results of a meta-analysis (18 studies, n = 4453 participants) showing that obesity was associated with lower fractional anisotropy (FA) values in the right genu of the corpus callosum (adapted from Daoust et al. [21], reproduced with editorial permission)

Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

BMI:

Body mass index

Cam-CAN:

Cambridge Centre for Ageing and Neuroscience

FA:

Fractional anisotropy

FFA:

Free fatty acids

LBP:

Lipopolysaccharide binding protein

TG:

Triglycerides

TNF-alpha:

Tumor necrosis factor alpha

TOF:

Time-of-flight

T2DM:

Type 2 diabetes mellitus

References

  1. González-Muniesa P, Mártinez-González MA, Hu FB, Després JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Prim. 2017;3.

  2. Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity pathogenesis: An endocrine society scientific statement. Endocr Rev. 2017;38:267–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bastien M, Poirier P, Lemieux I, Després JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81.

    Article  PubMed  Google Scholar 

  4. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation. International Circulation United States. 2009;120:1640–5.

    Article  CAS  Google Scholar 

  5. Stefan N, Schick F, Häring HU. Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metab. 2017;26:292–300.

    Article  CAS  PubMed  Google Scholar 

  6. Tchernof A, Després J-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol Rev. 2013;93:359–404.

    Article  CAS  PubMed  Google Scholar 

  7. Lemieux I, Poirier P, Bergeron J, Alméras N, Lamarche B, Cantin B, et al. Hypertriglyceridemic waist: a useful screening phenotype in preventive cardiology? Can J Cardiol. 2007;23 Suppl B:23B-31B.

  8. García-García I, Michaud A, Dadar M, Zeighami Y, Neseliler S, Collins DL, et al. Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes. 2019;43:943.

    Article  Google Scholar 

  9. Shaw ME, Sachdev PS, Abhayaratna W, Anstey KJ, Cherbuin N. Body mass index is associated with cortical thinning with different patterns in mid- and late-life. Int J Obes. 2018;42:455–61.

    Article  CAS  Google Scholar 

  10. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum S, Hudspeth AJ, Mack S. Principles of neural science. New York: McGraw-Hil; 2013.

    Google Scholar 

  11. Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J. 2019;40:2290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caunca MR, Gardener H, Simonetto M, Cheung YK, Alperin N, Yoshita M, et al. Measures of obesity are associated with MRI markers of brain aging: The Northern Manhattan Study. Neurology. 2019;93:e791-803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janowitz D, Wittfeld K, Terock J, Freyberger HJ, Hegenscheid K, Völzke H, et al. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples. Neuroimage. 2015;122:149–57.

    Article  PubMed  Google Scholar 

  14. Opel N, Redlich R, Kaehler C, Grotegerd D, Dohm K, Heindel W, et al. Prefrontal gray matter volume mediates genetic risks for obesity. Mol Psychiatry Nature Publishing Group. 2017;22:703–10.

    Article  CAS  Google Scholar 

  15. Beyer F, García-García I, Heinrich M, Schroeter ML, Sacher J, Luck T, et al. Neuroanatomical correlates of food addiction symptoms and body mass index in the general population. Hum Brain Mapp. 2019;1–12.

  16. Kharabian Masouleh S, Arélin K, Horstmann A, Lampe L, Kipping JA, Luck T, et al. Higher body mass index in older adults is associated with lower gray matter volume: implications for memory performance. Neurobiol Aging. 2016;40:1–10.

    Article  PubMed  Google Scholar 

  17. Opel N, Thalamuthu A, Milaneschi Y, Grotegerd D, Flint C, Leenings R, et al. Brain structural abnormalities in obesity: relation to age, genetic risk, and common psychiatric disorders: Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. Mol Psychiatry. 2021;26:4839–52.

    Article  PubMed  Google Scholar 

  18. Franz CE, Xian H, Lew D, Hatton SN, Puckett O, Whitsel N, et al. Body mass trajectories and cortical thickness in middle-aged men: A 42 year longitudinal study starting in young adulthood. Neurobiol Aging. 2019;79:11–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bobb JF, Schwartz BS, Davatzikos C, Caffo B. Cross-sectional and longitudinal association of body mass index and brain volume. Hum Brain Mapp. 2014;35:75–88.

    Article  PubMed  Google Scholar 

  20. Arnoldussen IAC, Gustafson DR, Leijsen EMC, de Leeuw F-E, Kiliaan AJ. Adiposity is related to cerebrovascular and brain volumetry outcomes in the RUN DMC study. Neurology 2019;93:e864 LP-e878.

  21. Daoust J, Schaffer J, Zeighami Y, Dagher A, García-García I, Michaud A. White Matter Integrity Differences in Obesity: A Meta-Analysis of Diffusion Tensor Imaging Studies. Neurosci Biobehav Rev. 2021; Available from: https://www.sciencedirect.com/science/article/pii/S0149763421003195

  22. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev. 2005;6:691–702.

    Article  CAS  Google Scholar 

  23. Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev. 2019;68:38–53.

    Article  PubMed  Google Scholar 

  24. García-García I, Morys F, Dagher A. Nucleus accumbens volume is related to obesity measures in an age-dependent fashion. J Neuroendocrinol. 2019; 32:e12812

  25. Birdsill AC, Oleson S, Kaur S, Pasha E, Ireton A, Tanaka H, et al. Abdominal obesity and white matter microstructure in midlife. Hum Brain Mapp. 2017;38:3337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang R, Beyer F, Lampe L, Luck T, Riedel-Heller SG, Loeffler M, et al. White matter microstructural variability mediates the relation between obesity and cognition in healthy adults. Neuroimage. 2018;172:239–49.

    Article  PubMed  Google Scholar 

  27. Verstynen TD, Weinstein A, Erickson KI, Sheu LK, Marsland AL, Gianaros PJ. Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure. Neuroimage. 2013;79:129–37.

    Article  PubMed  Google Scholar 

  28. Bouhrara M, Khattar N, Elango P, Resnick SM, Ferrucci L, Spencer RG. Evidence of association between obesity and lower cerebral myelin content in cognitively unimpaired adults. Int J Obes. 2021;45:850–9.

    Article  CAS  Google Scholar 

  29. Lampe L, Zhang R, Beyer F, Huhn S, Kharabian Masouleh S, Preusser S, et al. Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol. 2019;85:194–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–96.

    Article  PubMed  Google Scholar 

  31. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Morys F, Dadar M, Dagher A. Association between mid-life obesity, its metabolic consequences, cerebrovascular disease and cognitive decline. J Clin Endocrinol Metab. United States; 2021;

  33. Allen B, Muldoon MF, Gianaros PJ, Jennings JR. Higher Blood Pressure Partially Links Greater Adiposity to Reduced Brain White Matter Integrity. Am J Hypertens. 2016;29:1029–37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alfaro FJ, Gavrieli A, Saade-Lemus P, Lioutas VA, Upadhyay J, Novak V. White matter microstructure and cognitive decline in metabolic syndrome: A review of diffusion tensor imaging. Metabolism. 2018;78:52–68.

    Article  CAS  PubMed  Google Scholar 

  35. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13:633–43.

    Article  CAS  PubMed  Google Scholar 

  36. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20.

  37. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  39. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2009.

  40. Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40:237–53.

    Article  CAS  PubMed  Google Scholar 

  41. Baufeld C, Osterloh A, Prokop S, Miller KR, Heppner FL. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol. 2016;132:361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cazettes F, Cohen JI, Yau PL, Talbot H, Convit A. Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res. 2011;1373:101–9.

    Article  CAS  PubMed  Google Scholar 

  43. Prats-Soteras X, Jurado MA, Ottino-González J, García-García I, Segura B, Caldú X, et al. Inflammatory agents partially explain associations between cortical thickness, surface area, and body mass in adolescents and young adulthood. Int J Obes. 2020;44:1487–96.

    Article  CAS  Google Scholar 

  44. Debette S, Beiser A, Hoffmann U, Decarli C, O’Donnell CJ, Massaro JM, et al. Visceral fat is associated with lower brain volume in healthy middle-aged adults. Ann Neurol. 2010;68:136–44.

    PubMed  PubMed Central  Google Scholar 

  45. Syme C, Pelletier S, Shin J, Abrahamowicz M, Leonard G, Perron M, et al. Visceral fat-related systemic inflammation and the adolescent brain: a mediating role of circulating glycerophosphocholines. Int J Obes. 2019;43:1223–30.

    Article  CAS  Google Scholar 

  46. Moreno-Navarrete JM, Blasco G, Puig J, Biarnés C, Rivero M, Gich J, et al. Neuroinflammation in obesity: Circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance. Int J Obes. 2017;41:1627–35.

    Article  CAS  Google Scholar 

  47. Adelantado-Renau M, Esteban-Cornejo I, Rodriguez-Ayllon M, Cadenas-Sanchez C, Gil-Cosano JJ, Mora-Gonzalez J, et al. Inflammatory biomarkers and brain health indicators in children with overweight and obesity: The ActiveBrains project. Brain Behav Immun. 2019;81:588–97.

    Article  CAS  PubMed  Google Scholar 

  48. do Carmo JM, da Silva AA, Wang Z, Fang T, Aberdein N, de Lara Rodriguez CEP, et al. Obesity-Induced Hypertension: Brain Signaling Pathways. Curr Hypertens Rep 2016;18.

  49. Iadecola C, Davisson RL. Hypertension and Cerebrovascular Dysfunction. Cell Metab. 2008;7:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cipolla MJ, Liebeskind DS, Chan SL. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab. 2018;38:2129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kelly DM, Rothwell PM. Blood pressure and the brain: The neurology of hypertension. Pract Neurol. 2020;20:100–11.

    Article  PubMed  Google Scholar 

  52. Dahlöf B. Prevention of Stroke in Patients with Hypertension. Am J Cardiol. 2007;100.

  53. Chauhan G, Adams HHH, Satizabal CL, Bis JC, Teumer A, Sargurupremraj M, et al. Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology. 2019;92:E486-503.

    Article  PubMed Central  Google Scholar 

  54. Cox S, Ritchie S, Fawns-Ritchie C, Tucker-Drob E, Deary I. Brain imaging correlates of general intelligence in UK Biobank. Intelligence 2019;76:599472.

  55. Fuhrmann D, Nesbitt D, Shafto M, Rowe JB, Price D, Gadie A, et al. Strong and specific associations between cardiovascular risk factors and white matter micro- and macrostructure in healthy aging. Neurobiol Aging. 2019;74:46–55.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Williams OA, An Y, Beason-Held L, Huo Y, Ferrucci L, Landman BA, et al. Vascular burden and APOE ε4 are associated with white matter microstructural decline in cognitively normal older adults. Neuroimage. 2019;188:572–83.

    Article  CAS  PubMed  Google Scholar 

  57. De Havenon A, Majersik JJ, Tirschwell DL, McNally JS, Stoddard G, Rost NS. Blood pressure, glycemic control, and white matter hyperintensity progression in type 2 diabetics. Neurology. 2019;92:E1168–75.

    PubMed  PubMed Central  Google Scholar 

  58. Seshadri S, Wolf PA, Beiser A, Vasan RS, Wilson PWF, Kase CS, et al. Elevated midlife blood pressure increases stroke risk in elderly persons: The Framingham study. Arch Intern Med. 2001;161:2343–50.

    Article  CAS  PubMed  Google Scholar 

  59. Lane CA, Barnes J, Nicholas JM, Sudre CH, Cash DM, Parker TD, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study. Lancet Neurol 2019;18:942–52. 4422(19)30228–5

  60. Iadecola C, Gottesman RF. Neurovascular and Cognitive Dysfunction in Hypertension: Epidemiology, Pathobiology, and Treatment. Circ Res. 2019;124:1025–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alateeq K, Walsh EI, Cherbuin N. Higher Blood Pressure is Associated with Greater White Matter Lesions and Brain Atrophy: A Systematic Review with Meta-Analysis. J Clin Med. 2021;10:637.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schaare HL, Kharabian Masouleh S, Beyer F, Kumral D, Uhlig M, Reinelt JD, et al. Association of peripheral blood pressure with gray matter volume in 19- to 40-year-old adults. Neurology. 2019;92:e758–73.

    Article  PubMed  Google Scholar 

  63. Maciejczyk M, Żebrowska E, Chabowski A. Insulin resistance and oxidative stress in the brain: What’s new? Int. J. Mol. Sci. 2019. p. 874.

  64. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96:1169–209.

    Article  CAS  PubMed  Google Scholar 

  65. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18:139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance - A mini-review Gerontology; 2009. p. 379–86.

  67. Lebovitz H. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diabetes. 2001;109:S135–48.

    Article  CAS  PubMed  Google Scholar 

  68. Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. 2018. p. 496.

  69. Chen L, Chen R, Wang H, Liang F. Mechanisms Linking Inflammation to Insulin Resistance. Int. J. Endocrinol. Hindawi Limited; 2015.

  70. de la Monte SM. Insulin Resistance and Neurodegeneration: Progress Towards the Development of New Therapeutics for Alzheimer’s Disease. Drugs 2017. p. 47–65.

  71. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004. p. 4–7.

  72. Whitmer RA. Type 2 diabetes and risk of cognitive impairment and dementia. Curr. Neurol. Neurosci. Rep. 2007. p. 373–80.

  73. Najem D, Bamji-Mirza M, Chang N, Liu QY, Zhang W. Insulin resistance, neuroinflammation, and Alzheimer’s disease. Rev. Neurosci. 2014. p. 509–25.

  74. Lu R, Aziz NA, Diers K, Stöcker T, Reuter M, Breteler MMB. Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Hum Brain Mapp. 2021;42:2434–44.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ryu SY, Coutu JP, Rosas HD, Salat DH. Effects of insulin resistance on white matter microstructure in middle-aged and older adults. Neurology. 2014;82:1862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin J, Pelletier S, Richer L, Pike GB, Gaudet D, Paus T, et al. Adiposity‐related insulin resistance and thickness of the cerebral cortex in middle‐aged adults. J Neuroendocrinol 2020;32:e12921.

  77. Dearborn JL, Schneider ALC, Sharrett AR, Mosley TH, Bezerra DC, Knopman DS, et al. Obesity, Insulin Resistance, and Incident Small Vessel Disease on Magnetic Resonance Imaging: Atherosclerosis Risk in Communities Study. Stroke. 2015;46:3131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, et al. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care. 2013;36:443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oliveira BC de L, Bellozi PMQ, Reis HJ, de Oliveira ACP. Inflammation as a Possible Link Between Dyslipidemia and Alzheimer’s Disease. Neuroscience 2018. p. 127–41.

  80. Park JH, Hong KS, Lee EJ, Lee J, Kim DE. High levels of apolipoprotein B/AI ratio are associated with intracranial atherosclerotic stenosis. Stroke. 2011;42:3040–6.

    Article  CAS  PubMed  Google Scholar 

  81. Tóth ME, Dukay B, Hoyk Z, Sántha M. Cerebrovascular Changes and Neurodegeneration Related to Hyperlipidemia: Characteristics of the Human ApoB-100 Transgenic Mice. Curr Pharm Des. 2020;26:1486–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Bowman GL, Kaye JA, Quinn JF. Dyslipidemia and Blood-Brain Barrier Integrity in Alzheimer’s Disease. Curr Gerontol Geriatr Res. 2012;2012:184042.

  83. Wardlaw JM, Makin SJ, Valdés Hernández MC, Armitage PA, Heye AK, Chappell FM, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer’s Dement. 2017;13:634–43.

    Article  Google Scholar 

  84. Schwarz NF, Nordstrom LK, Pagen LHG, Palombo DJ, Salat DH, Milberg WP, et al. Differential associations of metabolic risk factors on cortical thickness in metabolic syndrome. NeuroImage Clin. 2018;17:98–108.

    Article  PubMed  Google Scholar 

  85. Ward. Low HDL cholesterol is associated with lower gray matter volume in cognitively healthy adults. Front Aging Neurosci2010;2:29.

  86. Shan H, Li P, Liu H, Nie B, Yin X, Zhang T, et al. Gray matter reduction related to decreased serum creatinine and increased triglyceride, Hemoglobin A1C, and low-density lipoprotein in subjects with obesity. Neuroradiology. 2019;61:703–10.

    Article  PubMed  Google Scholar 

  87. Crisby M, Bronge L, Wahlund L-O. Low Levels of High Density Lipoprotein Increase the Severity of Cerebral White Matter Changes: Implications for Prevention and Treatment of Cerebrovascular Diseases. Curr Alzheimer Res. 2010;7:534–9.

    Article  CAS  PubMed  Google Scholar 

  88. Bokura H, Yamaguchi S, Iijima K, Nagai A, Oguro H. Metabolic Syndrome Is Associated With Silent Ischemic Brain Lesions. Stroke. 2008;39:1607–9.

    Article  PubMed  Google Scholar 

  89. Williams VJ, Leritz EC, Shepel J, Mcglinchey RE, Milberg WP, Rudolph JL, et al. Interindividual variation in serum cholesterol is associated with regional white matter tissue integrity in older adults. Hum Brain Mapp. 2013;34:1826–41.

    Article  PubMed  Google Scholar 

  90. Iriondo A, García-Sebastian M, Arrospide A, Arriba M, Aurtenetxe S, Barandiaran M, et al. Plasma lipids are associated with white matter microstructural changes and axonal degeneration. Brain Imaging Behav Springer. 2021;15:1043–57.

    Article  Google Scholar 

  91. Piché ME, Tchernof A, Després JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020;1477–500.

  92. Hansson GK. Inflammation, Atherosclerosis, and Coronary Artery Disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  PubMed  Google Scholar 

  93. Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr. Physiol. 2018. p. 773–99.

  94. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, De Craen AJM, et al. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis. J Cereb Blood Flow Metab. 2016;36:1653–67.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18:419–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kang KM, Byun MS, Lee JH, Yi D, Choi HJ, Lee E, et al. Association of carotid and intracranial stenosis with Alzheimer’s disease biomarkers. Alzheimer’s Res Ther. Alzheimer’s Research & Therapy; 2020;12:1–11.

  97. Marshall RS, Asllani I, Pavol MA, Cheung YK, Lazar RM. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis. PLoS ONE. 2017;12:1–14.

    Article  Google Scholar 

  98. Muller M, Van Der Graaf Y, Algra A, Hendrikse J, Mali WP, Geerlings MI. Carotid atherosclerosis and progression of brain atrophy: The SMART-MR Study. Ann Neurol. 2011;70:237–44.

    Article  PubMed  Google Scholar 

  99. Alhusaini S, Karama S, Nguyen TV, Thiel A, Bernhardt BC, Cox SR, et al. Association between carotid atheroma and cerebral cortex structure at age 73 years. Ann Neurol. 2018;84:576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Laub GA. Time-of-flight method of MR angiography. Magn Reson Imaging Clin N Am. United States; 1995;3:391–8.

  101. Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: Clinical applications in the brain. J Magn Reson Imaging. 2015;41:1165–80.

    Article  PubMed  Google Scholar 

  102. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019.

  103. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:64–76.

    Article  PubMed  Google Scholar 

  105. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–96.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lampe L, Kharabian-Masouleh S, Kynast J, Arelin K, Steele CJ, Löffler M, et al. Lesion location matters: The relationships between white matter hyperintensities on cognition in the healthy elderly. J Cereb Blood Flow Metab. 2019;39:36–43.

    Article  PubMed  Google Scholar 

  107. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al. The Human Connectome Project: A data acquisition perspective. Neuroimage. 2012;62:2222–31.

    Article  PubMed  Google Scholar 

  109. Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage. 2017;144:262–9.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Spanish Ministry of Science, Innovation and Universities (grant number: PSI2017-8653). Ministerio de Ciencia, Innovación y Universidades, PSI2017-8653, María Ángeles Jurado

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel García-García.

Ethics declarations

Conflicts of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-García, I., Michaud, A., Jurado, M.Á. et al. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord 23, 833–843 (2022). https://doi.org/10.1007/s11154-021-09706-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09706-5

Keywords

Navigation