Skip to main content
Log in

Skeletal muscle glucose metabolism and inflammation in the development of the metabolic syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Insulin resistance and metabolic dysfunction in skeletal muscle play a major role in the development of the metabolic syndrome and type 2 diabetes. Numerous mechanisms have been proposed to explain the pathophysiology of obesity-linked metabolic dysfunction and this review will focus on the contributing role of adiponectin and inflammation. The beneficial effects of adiponectin on both insulin action and inflammation are now well documented and will be reviewed. More recent work provided new insights into adiponectin signaling mechanisms. The development of strategies to mimic adiponectin action holds promise that adiponectin-based compounds may translate into effective therapeutic applications. We will also discussed the novel role of long chain ω-3 PUFA-derived resolution mediators, which in addition to resolving inflammation, can also exert glucoregulatory effects in models of obesity and insulin resistance. We will focus on one resolution mediator, protectin DX (PDX), which was recently shown to act as a muscle interleukin-6 secretagogue. PDX and its isomer PD1 also enhance adiponectin expression and action. Ultimately, it is via a better understanding the molecular mechanisms of action via which inflammation, insulin resistance and metabolic dysfunction occur in skeletal muscle, and also how they crosstalk with each other, that we can generate new and improved therapies for obesity-linked metabolic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sherwin R, Jastreboff AM. Year in diabetes 2012: The diabetes tsunami. J Clin Endocrinol Metab. 2012;97(12):4293–301. doi:10.1210/jc.2012-3487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010;2010:476279. doi:10.1155/2010/476279.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Raschke S, Eckel J. Adipo-myokines: Two sides of the same coin–mediators of inflammation and mediators of exercise. Mediat Inflamm. 2013;2013:320724. doi:10.1155/2013/320724.

    Article  Google Scholar 

  4. Henriksen T, Green C, Pedersen BK. Myokines in myogenesis and health. Recent Patents Biotechnol. 2012;6(3):167–71.

    Article  CAS  Google Scholar 

  5. Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014;15(1):79–97. doi:10.1007/s11154-013-9282-4.

    Article  CAS  PubMed  Google Scholar 

  6. Fan W, Atkins AR, Yu RT, Downes M, Evans RM. Road to exercise mimetics: Targeting nuclear receptors in skeletal muscle. J Mol Endocrinol. 2013;51(3):T87–T100. doi:10.1530/JME-13-0258.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Sweeney G. Adiponectin action in skeletal muscle. Best Pract Res Clin Endocrinol Metab. 2014;28(1):33–41. doi:10.1016/j.beem.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  8. Scheid MP, Sweeney G. The role of adiponectin signaling in metabolic syndrome and cancer. Rev Endocr Metab Disord. 2014;15(2):157–67. doi:10.1007/s11154-013-9265-5.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J Clin Endocrinol Metab. 2007;92(11):4313–8. doi:10.1210/jc.2007-0890.

    Article  CAS  PubMed  Google Scholar 

  10. Ye R, Scherer PE. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol Metab. 2013;2(3):133–41. doi:10.1016/j.molmet.2013.04.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013;17(2):185–96. doi:10.1016/j.cmet.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  12. Kuoppamaa H, Skrobuk P, Sihvo M, Hiukka A, Chibalin AV, Zierath JR, et al. Globular adiponectin stimulates glucose transport in type 2 diabetic muscle. Diabetes Metab Res Rev. 2008;24(7):554–62. doi:10.1002/dmrr.883.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng KK, Lam KS, Wang B, Xu A. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best Pract Res Clin Endocrinol Metab. 2014;28(1):3–13. doi:10.1016/j.beem.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Turdi S, Park T, Morris NJ, Deshaies Y, Xu A, et al. Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomic profile and whole-body glucose homeostasis. Diabetes. 2013;62(3):743–52. doi:10.2337/db12-0687.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Combs TP, Marliss EB. Adiponectin signaling in the liver. Rev Endocr Metab Disord. 2014;15(2):137–47. doi:10.1007/s11154-013-9280-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yamauchi T, Iwabu M, Okada-Iwabu M, Kadowaki T. Adiponectin receptors: A review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab. 2014;28(1):15–23. doi:10.1016/j.beem.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  17. Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–23. doi:10.1038/ncb1404.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.

    Article  PubMed  Google Scholar 

  19. Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.1038/nm1557.

    Article  CAS  PubMed  Google Scholar 

  20. Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.2337/db06-1432.

    Article  CAS  PubMed  Google Scholar 

  21. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca (2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.

    Article  CAS  PubMed  Google Scholar 

  22. Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.1007/s00125-004-1609-y.

    Article  CAS  PubMed  Google Scholar 

  23. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95. doi:10.1038/nm788.

    Article  CAS  PubMed  Google Scholar 

  24. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005–10. doi:10.1073/pnas.041591798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. doi:10.1038/nature01705.

    Article  CAS  PubMed  Google Scholar 

  26. Dadson K, Turdi S, Hashemi S, Zhao J, Polidovitch N, Beca S et al. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy. Journal of Molecular & Cellular Cardiology. 2014;submitted.

  27. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87. doi:10.1016/j.cmet.2006.05.002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gulli RA, Tishinsky JM, MacDonald T, Robinson LE, Wright DC, Dyck DJ. Exercise restores insulin, but not adiponectin, response in skeletal muscle of high-fat fed rodents. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R1062–70. doi:10.1152/ajpregu.00176.2012.

    Article  CAS  PubMed  Google Scholar 

  29. Mullen KL, Tishinsky JM, Robinson LE, Dyck DJ. Skeletal muscle inflammation is not responsible for the rapid impairment in adiponectin response with high-fat feeding in rats. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R500–8. doi:10.1152/ajpregu.00080.2010.

    Article  CAS  PubMed  Google Scholar 

  30. Mullen KL, Smith AC, Junkin KA, Dyck DJ. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab. 2007;293(1):E83–90. doi:10.1152/ajpendo.00545.2006.

    Article  CAS  PubMed  Google Scholar 

  31. Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, et al. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R243–51. doi:10.1152/ajpregu.90774.2008.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.1074/jbc.M402367200.

    Article  CAS  PubMed  Google Scholar 

  33. Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. J Mol Endocrinol. 2005;35(3):465–76. doi:10.1677/jme.1.01877.

    Article  CAS  PubMed  Google Scholar 

  34. Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia. 2004;47(5):816–20. doi:10.1007/s00125-004-1359-x.

    Article  CAS  PubMed  Google Scholar 

  35. Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, et al. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia. 2004;47(5):917–25. doi:10.1007/s00125-004-1394-7.

    Article  CAS  PubMed  Google Scholar 

  36. Buechler C, Wanninger J, Neumeier M. Adiponectin receptor binding proteins–recent advances in elucidating adiponectin signalling pathways. FEBS Lett. 2010;584(20):4280–6. doi:10.1016/j.febslet.2010.09.035.

    Article  CAS  PubMed  Google Scholar 

  37. Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Exercise training reverses adiponectin resistance in skeletal muscle of patients with chronic heart failure. Heart. 2011;97(17):1403–9. doi:10.1136/hrt.2011.226373.

    Article  PubMed  Google Scholar 

  38. Wang C, Xin X, Xiang R, Ramos FJ, Liu M, Lee HJ, et al. Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. J Biol Chem. 2009;284(46):31608–15. doi:10.1074/jbc.M109.010355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. J Cell Physiol. 2012;227(7):2917–26. doi:10.1002/jcp.23037.

    Article  CAS  PubMed  Google Scholar 

  40. Li FY, Lam KS, Xu A. Therapeutic perspectives for adiponectin: An update. Curr Med Chem. 2012;19(32):5513–23.

    Article  CAS  PubMed  Google Scholar 

  41. Shetty S, Kusminski CM, Scherer PE. Adiponectin in health and disease: Evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci. 2009;30(5):234–9. doi:10.1016/j.tips.2009.02.004.

    Article  CAS  PubMed  Google Scholar 

  42. Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493–9. doi:10.1038/nature12656.

    Article  CAS  PubMed  Google Scholar 

  43. Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.1002/dmrr.778.

    Article  CAS  PubMed  Google Scholar 

  44. Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. Lipids Health Dis. 2012;11:134. doi:10.1186/1476-511X-11-134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. White PJ, Marette A. Inflammation-Induced Insulin Resistance in Obesity: When Immunity Affects Metabolic Control. In: Hawley JA, Zierath JR, editors. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. 2008. p. 83–106.

  46. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang X, Xu A, Chung SK, Cresser JH, Sweeney G, Wong RL, et al. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes. 2011;60(2):486–95. doi:10.2337/db10-0650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 2004;10(10):1128–32.

    Article  CAS  PubMed  Google Scholar 

  50. Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord. 2003;27:S49–52. doi:10.1038/sj.ijo.08025010802501. Suppl 3.

    Article  CAS  PubMed  Google Scholar 

  51. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest. 2004;114(6):823–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50(1):35–51. doi:10.1016/j.plipres.2010.07.005.

    Article  CAS  PubMed  Google Scholar 

  53. Norling LV, Serhan CN. Profiling in resolving inflammatory exudates identifies novel anti-inflammatory and pro-resolving mediators and signals for termination. J Intern Med. 2010;268(1):15–24. doi:10.1111/j.1365-2796.2010.02235.x.

    CAS  PubMed  Google Scholar 

  54. Serhan CN, Savill J. Resolution of inflammation: The beginning programs the end. Nat Immunol. 2005;6(12):1191–7. doi:10.1038/ni1276.

    Article  CAS  PubMed  Google Scholar 

  55. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: Assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176(3):1848–59.

    Article  CAS  PubMed  Google Scholar 

  56. Chen P, Fenet B, Michaud S, Tomczyk N, Vericel E, Lagarde M, et al. Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Lett. 2009;583(21):3478–84. doi:10.1016/j.febslet.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  57. Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie. 2013. doi:S0300-9084 (13) 00402-1 10:1016/j.biochi.2013.11.006.

  58. Kang JX, Wang J, Wu L, Kang ZB. Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature. 2004;427(6974):504. doi:10.1038/427504a 427504a.

    Article  CAS  PubMed  Google Scholar 

  59. White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes. 2010;59(12):3066–73. doi:10.2337/db10-0054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 2006;20(14):2537–9. doi:10.1096/fj.06-6250fje.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, et al. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PLoS One. 2011;6(1):e15816. doi:10.1371/journal.pone.0015816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Claria J, Dalli J, Yacoubian S, Gao F, Serhan CN. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol. 2012;189(5):2597–605. doi:10.4049/jimmunol.1201272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I, Leitner L, et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945–56. doi:10.2337/db12-0828.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20(6):664–9. doi:10.1038/nm.3549.

    Article  CAS  PubMed  Google Scholar 

  65. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688–97. doi:10.2337/db05-1404.

    Article  CAS  PubMed  Google Scholar 

  66. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53(7):1643–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Related work in the authors laboratories is supported by operating grants from Canadian Diabetes Association (AM & GS), Heart & Stroke Foundation of Canada (GS), Canadian Institutes of Health Research (AM & GS). GS also acknowledges support via a Career Investigator Award from Heart & Stroke Fundation Ontario. AM was supported by a CIHR/Pfizer Research Chair in the pathogenesis of insulin resistance and cardiovascular diseases.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André Marette or Gary Sweeney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marette, A., Liu, Y. & Sweeney, G. Skeletal muscle glucose metabolism and inflammation in the development of the metabolic syndrome. Rev Endocr Metab Disord 15, 299–305 (2014). https://doi.org/10.1007/s11154-014-9296-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9296-6

Keywords

Navigation