Skip to main content

Advertisement

Log in

Metabolic syndrome and lifestyle modification

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

A clustering of metabolic abnormalities such as dyslipidemia, hypertension, and diabetes mellitus, all of which are major risk factors for cardiovascular disease (CVD), occurs more often than by chance. Numerous epidemiological studies, as well as basic researches, have revealed that visceral fat accumulation is closely involved in this risk clustering. This morbid condition is now well recognized as the metabolic syndrome. The concept of the metabolic syndrome, i.e., the involvement of visceral adiposity in the clustering of CVD risk factors, implies that an effective CVD risk reduction will be accomplished by an intervention to reduce visceral fat deposits. The primary strategy of the intervention is lifestyle modification, which can be put into practice in healthcare fields, without necessity of medical treatment. Now that CVD is a leading global health burden, the metabolic syndrome attracts increasing attention in the world. To take global action against the syndrome, several working groups developed its internationally unified diagnostic criteria. Most recently, the International Diabetes Federation (IDF) and the American Heart Association/National Heart, Lung, and Blood Institute (AHA/NHLBI) jointly proposed the criteria, although some cautions will be needed in their practical use. In this review, we mainly focus on the findings observed in clinical and epidemiological studies, to discuss a practical strategy of the management of the metabolic syndrome in healthcare fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes 3rd J. Factors of risk in the development of coronary heart disease–six year follow-up experience. The Framingham study. Ann Intern Med. 1961;55:33–50.

    CAS  PubMed  Google Scholar 

  2. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256(20):2823–8.

    CAS  PubMed  Google Scholar 

  3. Vague J. La differenciation sexuelle, feateur determinant des formes de l’obesite. Presse Med. 1947;55:339–40.

    CAS  PubMed  Google Scholar 

  4. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36(1):54–9.

    CAS  PubMed  Google Scholar 

  5. Kanai H, Matsuzawa Y, Kotani K, Keno Y, Kobatake T, Nagai Y, et al. Close correlation of intra-abdominal fat accumulation to hypertension in obese women. Hypertension. 1990;16(5):484–90.

    CAS  PubMed  Google Scholar 

  6. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. Atherosclerosis. 1994;107(2):239–46.

    CAS  PubMed  Google Scholar 

  7. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    CAS  PubMed  Google Scholar 

  8. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. doi:10.1038/372425a0.

    CAS  PubMed  Google Scholar 

  9. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun. 1996;221(2):286–9. doi:10.1006/bbrc.1996.0587.

    CAS  PubMed  Google Scholar 

  10. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996;2(7):800–3.

    CAS  PubMed  Google Scholar 

  11. Matsumoto S, Kishida K, Shimomura I, Maeda N, Nagaretani H, Matsuda M, et al. Increased plasma HB-EGF associated with obesity and coronary artery disease. Biochem Biophys Res Commun. 2002;292(3):781–6. doi:10.1006/bbrc.2002.6720.

    CAS  PubMed  Google Scholar 

  12. World Health Organization. 2008–2013 action plan for the global strategy for the prevention and control of noncommunicable diseases : prevent and control cardiovascular diseases, cancers, chronic respiratory diseases and diabetes. Geneva: WHO Press; 2008.

    Google Scholar 

  13. Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obes. 1983;7(5):437–45.

    CAS  PubMed  Google Scholar 

  14. Anderson PJ, Chan JC, Chan YL, Tomlinson B, Young RP, Lee ZS, et al. Visceral fat and cardiovascular risk factors in Chinese NIDDM patients. Diabetes Care. 1997;20(12):1854–8.

    CAS  PubMed  Google Scholar 

  15. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation. 2007;116(1):39–48. doi:10.1161/CIRCULATIONAHA.106.675355.

    PubMed  Google Scholar 

  16. Liu J, Fox CS, Hickson DA, May WD, Hairston KG, Carr JJ, et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson heart study. J Clin Endocrinol Metab. 2010;95(12):5419–26. doi:10.1210/jc.2010-1378.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.

    CAS  PubMed  Google Scholar 

  18. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68(11):975–81.

    CAS  PubMed  Google Scholar 

  19. Nishimura A, Sawai T. Determination of adiponectin in serum using a latex particle-enhanced turbidimetric immunoassay with an automated analyzer. Clin Chim Acta. 2006;371(1–2):163–8. doi:10.1016/j.cca.2006.03.008.

    CAS  PubMed  Google Scholar 

  20. Ai M, Otokozawa S, Asztalos BF, White CC, Cupples LA, Nakajima K, et al. Adiponectin: an independent risk factor for coronary heart disease in men in the Framingham offspring study. Atherosclerosis. 2011;217(2):543–8. doi:10.1016/j.atherosclerosis.2011.05.035.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb. 2011;18(8):629–39.

    CAS  PubMed  Google Scholar 

  22. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24(1):29–33. doi:10.1161/01.ATV.0000099786.99623.EF.

    CAS  PubMed  Google Scholar 

  23. Takahara M, Katakami N, Kaneto H, Noguchi M, Shimomura I. Contribution of visceral fat accumulation and Adiponectin to the clustering of metabolic abnormalities in a Japanese population. J Atheroscler Thromb. 2014;21(6):543–53.

    CAS  PubMed  Google Scholar 

  24. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28(7):850–6. doi:10.1093/eurheartj/ehm026.

    PubMed  Google Scholar 

  25. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69. doi:10.1017/S0954422410000144.

    PubMed  Google Scholar 

  26. Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty GD. Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes Rev. 2011;12(9):680–7. doi:10.1111/j.1467-789X.2011.00879.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wormser D, Kaptoge S, Di Angelantonio E, Wood AM, Pennells L, Thompson A, et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95. doi:10.1016/S0140-6736(11)60105-0.

    PubMed  Google Scholar 

  28. Okauchi Y, Nishizawa H, Funahashi T, Ogawa T, Noguchi M, Ryo M, et al. Reduction of visceral fat is associated with decrease in the number of metabolic risk factors in Japanese men. Diabetes Care. 2007;30(9):2392–4. doi:10.2337/dc07-0218.

    PubMed  Google Scholar 

  29. Okauchi Y, Kishida K, Funahashi T, Noguchi M, Ogawa T, Ryo M, et al. Changes in serum adiponectin concentrations correlate with changes in BMI, waist circumference, and estimated visceral fat area in middle-aged general population. Diabetes Care. 2009;32(10):e122. doi:10.2337/dc09-1130.

    PubMed  Google Scholar 

  30. Borel AL, Nazare JA, Smith J, Almeras N, Tremblay A, Bergeron J, et al. Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program. Obesity (Silver Spring). 2012;20(6):1223–33. doi:10.1038/oby.2011.396.

    CAS  Google Scholar 

  31. Borel AL, Nazare JA, Smith J, Almeras N, Tremblay A, Bergeron J, et al. Improvement in insulin sensitivity following a 1-year lifestyle intervention program in viscerally obese men: contribution of abdominal adiposity. Metabolism. 2012;61(2):262–72. doi:10.1016/j.metabol.2011.06.024.

    CAS  PubMed  Google Scholar 

  32. Pelletier-Beaumont E, Arsenault BJ, Almeras N, Bergeron J, Tremblay A, Poirier P, et al. Normalization of visceral adiposity is required to normalize plasma apolipoprotein B levels in response to a healthy eating/physical activity lifestyle modification program in viscerally obese men. Atherosclerosis. 2012;221(2):577–82. doi:10.1016/j.atherosclerosis.2012.01.023.

    CAS  PubMed  Google Scholar 

  33. Okauchi Y, Kishida K, Funahashi T, Noguchi M, Morita S, Ogawa T, et al. 4-year follow-up of cardiovascular events and changes in visceral fat accumulation after health promotion program in the Amagasaki visceral fat study. Atherosclerosis. 2010;212(2):698–700. doi:10.1016/j.atherosclerosis.2010.06.011.

    CAS  PubMed  Google Scholar 

  34. The Examination Committee of Criteria for the Metabolic Syndrome in Japan. Definition and diagnostic criteria of the metabolic syndrome. J Japan Soc Intern Med. 2005;94:794–809 (in Japanese).

  35. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469–80. doi:10.1111/j.1464-5491.2006.01858.x.

    CAS  PubMed  Google Scholar 

  36. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American college of cardiology/American heart association task force on practice guidelines and the obesity society. Circulation. 2014;129(25 Suppl 2):S102–38. doi:10.1161/01.cir.0000437739.71477.ee.

    PubMed  Google Scholar 

  37. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73. doi:10.1056/NEJMoa0804748.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One. 2013;8(2):e56415. doi:10.1371/journal.pone.0056415.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Nazare JA, Smith J, Borel AL, Almeras N, Tremblay A, Bergeron J, et al. Changes in both global diet quality and physical activity level synergistically reduce visceral adiposity in men with features of metabolic syndrome. J Nutr. 2013;143(7):1074–83. doi:10.3945/jn.113.175273.

    CAS  PubMed  Google Scholar 

  40. Chilton M, Dunkley A, Carter P, Davies MJ, Khunti K, Gray LJ. The effect of antiobesity drugs on waist circumference: a mixed treatment comparison. Diabetes Obes Metab. 2014;16(3):237–47. doi:10.1111/dom.12198.

    CAS  PubMed  Google Scholar 

  41. Chan EW, He Y, Chui CS, Wong AY, Lau WC, Wong IC. Efficacy and safety of lorcaserin in obese adults: a meta-analysis of 1-year randomized controlled trials (RCTs) and narrative review on short-term RCTs. Obes Rev. 2013;14(5):383–92. doi:10.1111/obr.12015.

    CAS  PubMed  Google Scholar 

  42. Viner RM, Hsia Y, Tomsic T, Wong IC. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis. Obes Rev. 2010;11(8):593–602. doi:10.1111/j.1467-789X.2009.00651.x.

    CAS  PubMed  Google Scholar 

  43. Padwal R, Li SK, Lau DC. Long-term pharmacotherapy for obesity and overweight. Cochrane Database Syst Rev. 2004;3, CD004094. doi:10.1002/14651858.CD004094.pub2.

    PubMed  Google Scholar 

  44. Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet. 2007;369(9555):71–7. doi:10.1016/S0140-6736(07)60033-6.

    CAS  PubMed  Google Scholar 

  45. Kim MK, Kim W, Kwon HS, Baek KH, Kim EK, Song KH. Effects of bariatric surgery on metabolic and nutritional parameters in severely obese Korean patients with type 2 diabetes: a prospective 2-year follow up. J Diabetes Investig. 2014;5(2):221–7. doi:10.1111/jdi.12137.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bradley D, Conte C, Mittendorfer B, Eagon JC, Varela JE, Fabbrini E, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. 2012;122(12):4667–74. doi:10.1172/JCI64895.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Olbers T, Bjorkman S, Lindroos A, Maleckas A, Lonn L, Sjostrom L, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22. doi:10.1097/01.sla.0000218085.25902.f8.

    PubMed Central  PubMed  Google Scholar 

  48. Miller GD, Carr JJ, Fernandez AZ. Regional fat changes following weight reduction from laparoscopic Roux-en-Y gastric bypass surgery. Diabetes Obes Metab. 2011;13(2):189–92. doi:10.1111/j.1463-1326.2010.01338.x.

    CAS  PubMed  Google Scholar 

  49. Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61. doi:10.1056/NEJMoa066603.

    CAS  PubMed  Google Scholar 

  50. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311(1):74–86. doi:10.1001/jama.2013.281361.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ryo M, Nakamura T, Funahashi T, Noguchi M, Kishida K, Okauchi Y, et al. Health education “Hokenshido” program reduced metabolic syndrome in the Amagasaki visceral fat study. Three-year follow-up study of 3,174 Japanese employees. Intern Med. 2011;50(16):1643–8.

    PubMed  Google Scholar 

  52. Muramoto A, Yamamoto N, Nakamura M, Koike G, Numata T, Tamakoshi A, et al. Effect of intensive lifestyle intervention programs on metabolic syndrome and obesity: how much weight reduction is needed to improve metabolic comorbidities? J Jpn Soc Study Obes. 2010;16(3):182–7 (in Japanese).

    Google Scholar 

  53. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120(16):1640–5. doi:10.1161/CIRCULATIONAHA.109.192644.

    CAS  PubMed  Google Scholar 

  54. Takahara M, Kaneto H, Shimomura I. High prevalence of normal waist circumference in Japanese employees with a cluster of metabolic abnormalities. J Atheroscler Thromb. 2013;20(3):310–2.

    PubMed  Google Scholar 

  55. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32. doi:10.1016/j.jacc.2010.05.034.

    PubMed  Google Scholar 

  56. Shin JA, Lee JH, Lim SY, Ha HS, Kwon HS, Park YM, et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J Diabetes Investig. 2013;4(4):334–43. doi:10.1111/jdi.12075.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Wilson PW, D”Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    CAS  PubMed  Google Scholar 

  58. Chambless LE, Folsom AR, Sharrett AR, Sorlie P, Couper D, Szklo M, et al. Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study. J Clin Epidemiol. 2003;56(9):880–90.

    PubMed  Google Scholar 

  59. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105(3):310–5.

    PubMed  Google Scholar 

  60. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study. BMJ. 2007;335(7611):136. doi:10.1136/bmj.39261.471806.55.

    PubMed Central  PubMed  Google Scholar 

  61. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003.

    CAS  PubMed  Google Scholar 

  62. Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ. 2009;338:b880. doi:10.1136/bmj.b880.

    PubMed Central  PubMed  Google Scholar 

  63. Doi Y, Ninomiya T, Hata J, Hirakawa Y, Mukai N, Iwase M, et al. Two risk score models for predicting incident Type 2 diabetes in Japan. Diabet Med. 2012;29(1):107–14. doi:10.1111/j.1464-5491.2011.03376.x.

    CAS  PubMed  Google Scholar 

  64. Alssema M, Vistisen D, Heymans MW, Nijpels G, Glumer C, Zimmet PZ, et al. The evaluation of screening and early detection strategies for type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia. 2011;54(5):1004–12. doi:10.1007/s00125-010-1990-7.

    CAS  PubMed  Google Scholar 

  65. Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002;136(8):575–81.

    PubMed  Google Scholar 

  66. Wannamethee SG, Shaper AG, Lennon L, Morris RW. Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med. 2005;165(22):2644–50. doi:10.1001/archinte.165.22.2644.

    PubMed  Google Scholar 

  67. McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care. 2005;28(2):385–90.

    PubMed  Google Scholar 

  68. Wannamethee SG. The metabolic syndrome and cardiovascular risk in the British regional heart study. Int J Obes. 2008;32 Suppl 2:S25–9. doi:10.1038/ijo.2008.32.

    Google Scholar 

  69. Cameron AJ, Magliano DJ, Zimmet PZ, Welborn TA, Colagiuri S, Tonkin AM, et al. The metabolic syndrome as a tool for predicting future diabetes: the AusDiab study. J Intern Med. 2008;264(2):177–86. doi:10.1111/j.1365-2796.2008.01935.x.

    CAS  PubMed  Google Scholar 

  70. Stern MP, Williams K, Gonzalez-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27(11):2676–81.

    PubMed  Google Scholar 

  71. Takahara M, Katakami N, Kaneto H, Noguchi M, Shimomura I. Statistical reassessment of the association between waist circumference and clustering metabolic abnormalities in Japanese population. J Atheroscler Thromb. 2012;19(8):767–78.

    PubMed  Google Scholar 

  72. Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460–8.

    CAS  PubMed  Google Scholar 

  73. Expert WHO. Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–63.

    Google Scholar 

  74. Despres JP, Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol. 2000;20(8):1932–8.

    CAS  PubMed  Google Scholar 

  75. Tan CE, Ma S, Wai D, Chew SK, Tai ES. Can we apply the national cholesterol education program adult treatment panel definition of the metabolic syndrome to Asians? Diabetes Care. 2004;27(5):1182–6.

    PubMed  Google Scholar 

  76. Lear SA, Toma M, Birmingham CL, Frohlich JJ. Modification of the relationship between simple anthropometric indices and risk factors by ethnic background. Metabolism. 2003;52(10):1295–301.

    CAS  PubMed  Google Scholar 

  77. Kadowaki T, Sekikawa A, Murata K, Maegawa H, Takamiya T, Okamura T, et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes. 2006;30(7):1163–5. doi:10.1038/sj.ijo.0803248.

    CAS  Google Scholar 

  78. Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism. 1996;45(9):1119–24.

    CAS  PubMed  Google Scholar 

  79. Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European GROUP for the Study of Insulin Resistance (EGIR). Diabet Med. 1999;16(5):442–3.

    CAS  PubMed  Google Scholar 

  80. Executive summary of the third report of the national cholesterol education program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Jama. 2001;285(19):2486–97.

  81. Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Lin WY, Lee LT, Chen CY, Lo H, Hsia HH, Liu IL, et al. Optimal cut-off values for obesity: using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. Int J Obes Relat Metab Disord. 2002;26(9):1232–8. doi:10.1038/sj.ijo.0802040.

    PubMed  Google Scholar 

  83. Wildman RP, Gu D, Reynolds K, Duan X, He J. Appropriate body mass index and waist circumference cutoffs for categorization of overweight and central adiposity among Chinese adults. Am J Clin Nutr. 2004;80(5):1129–36.

    CAS  PubMed  Google Scholar 

  84. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults–study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15(1):83–96.

    PubMed  Google Scholar 

  85. Snehalatha C, Viswanathan V, Ramachandran A. Cutoff values for normal anthropometric variables in asian Indian adults. Diabetes Care. 2003;26(5):1380–4.

    PubMed  Google Scholar 

  86. Hiuge-Shimizu A, Kishida K, Funahashi T, Ishizaka Y, Oka R, Okada M, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med. 2012;44(1):82–92. doi:10.3109/07853890.2010.526138.

    PubMed  Google Scholar 

  87. Oka R, Miura K, Sakurai M, Nakamura K, Yagi K, Miyamoto S, et al. Impacts of visceral adipose tissue and subcutaneous adipose tissue on metabolic risk factors in middle-aged Japanese. Obesity (Silver Spring). 2010;18(1):153–60. doi:10.1038/oby.2009.180.

    CAS  Google Scholar 

  88. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7. doi:10.1038/nature05488.

    CAS  PubMed  Google Scholar 

  89. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J. 2005;149(1):33–45. doi:10.1016/j.ahj.2004.07.013.

    CAS  PubMed  Google Scholar 

  90. Byrne CD, Targher G. Ectopic fat, insulin resistance, and nonalcoholic fatty liver disease: implications for cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014;34(6):1155–61. doi:10.1161/ATVBAHA.114.303034.

    CAS  PubMed  Google Scholar 

  91. Stefan N, Kantartzis K, Machann J, Schick F, Thamer C, Rittig K, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008;168(15):1609–16. doi:10.1001/archinte.168.15.1609.

    PubMed  Google Scholar 

  92. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999;48(5):1113–9.

    CAS  PubMed  Google Scholar 

  93. Yim JE, Heshka S, Albu J, Heymsfield S, Kuznia P, Harris T, et al. Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int J Obes. 2007;31(9):1400–5. doi:10.1038/sj.ijo.0803621.

    CAS  Google Scholar 

  94. Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000;71(4):885–92.

    CAS  PubMed  Google Scholar 

  95. Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, et al. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab. 2013;98(3):1115–21. doi:10.1210/jc.2012-3806.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Wang CY, Ou HY, Chen MF, Chang TC, Chang CJ. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc. 2014;3(1):e000297. doi:10.1161/JAHA.113.000297.

    PubMed Central  PubMed  Google Scholar 

  97. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–17. doi:10.1016/j.ahj.2007.03.019.

    CAS  PubMed  Google Scholar 

  98. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88(11):5163–8. doi:10.1210/jc.2003-030698.

    CAS  PubMed  Google Scholar 

  99. Iacobellis G, Leonetti F. Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab. 2005;90(11):6300–2. doi:10.1210/jc.2005-1087.

    CAS  PubMed  Google Scholar 

  100. Rabkin SW. The relationship between epicardial fat and indices of obesity and the metabolic syndrome: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2014;12(1):31–42. doi:10.1089/met.2013.0107.

    CAS  PubMed  Google Scholar 

  101. Csendes A, Maluenda F, Burgos AM. A prospective randomized study comparing patients with morbid obesity submitted to laparotomic gastric bypass with or without omentectomy. Obes Surg. 2009;19(4):490–4. doi:10.1007/s11695-008-9660-2.

    PubMed  Google Scholar 

  102. Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology. 2010;139(2):448–55. doi:10.1053/j.gastro.2010.04.056.

    PubMed Central  PubMed  Google Scholar 

  103. Herrera MF, Pantoja JP, Velazquez-Fernandez D, Cabiedes J, Aguilar-Salinas C, Garcia-Garcia E, et al. Potential additional effect of omentectomy on metabolic syndrome, acute-phase reactants, and inflammatory mediators in grade III obese patients undergoing laparoscopic Roux-en-Y gastric bypass: a randomized trial. Diabetes Care. 2010;33(7):1413–8. doi:10.2337/dc09-1833.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Dillard TH, Purnell JQ, Smith MD, Raum W, Hong D, Laut J, et al. Omentectomy added to Roux-en-Y gastric bypass surgery: a randomized, controlled trial. Surg Obes Relat Dis. 2013;9(2):269–75. doi:10.1016/j.soard.2011.09.027.

    PubMed  Google Scholar 

  105. Tamboli RA, Hajri T, Jiang A, Marks-Shulman PA, Williams DB, Clements RH, et al. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy. PLoS One. 2011;6(12):e28577. doi:10.1371/journal.pone.0028577.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Lima MM, Pareja JC, Alegre SM, Geloneze SR, Kahn SE, Astiarraga BD, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182–9. doi:10.1002/oby.20030.

    CAS  Google Scholar 

  107. Schafer S, Kantartzis K, Machann J, Venter C, Niess A, Schick F, et al. Lifestyle intervention in individuals with normal versus impaired glucose tolerance. Eur J Clin Invest. 2007;37(7):535–43. doi:10.1111/j.1365-2362.2007.01820.x.

    CAS  PubMed  Google Scholar 

  108. Bosy-Westphal A, Kossel E, Goele K, Blocker T, Lagerpusch M, Later W, et al. Association of pericardial fat with liver fat and insulin sensitivity after diet-induced weight loss in overweight women. Obesity (Silver Spring). 2010;18(11):2111–7. doi:10.1038/oby.2010.49.

    CAS  Google Scholar 

  109. Kim MK, Tanaka K, Kim MJ, Matuso T, Endo T, Tomita T, et al. Comparison of epicardial, abdominal and regional fat compartments in response to weight loss. Nutr Metab Cardiovasc Dis. 2009;19(11):760–6. doi:10.1016/j.numecd.2009.01.010.

    PubMed  Google Scholar 

Download references

Conflict of interest

None of the authors have conflict of interest to declare in relation with the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iichiro Shimomura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahara, M., Shimomura, I. Metabolic syndrome and lifestyle modification. Rev Endocr Metab Disord 15, 317–327 (2014). https://doi.org/10.1007/s11154-014-9294-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9294-8

Keywords

Navigation