Skip to main content
Log in

Research in the Area of Preparing Activated Alumina. Part 3. Efficiency of Using Russian Additive-Intensifiers during Milling High-Alumina Raw Materials

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results of studying the influence of Russian commercial milling additives of various chemical nature on the process of dry milling calcined alumina are presented. It is shown that use of the additives studied makes it possible not only to reduce the time of alumina raw material fine milling of by a factor of 1.5 – 2, but also to increase the submicron particle fraction (<1 μm) yield within finished activated product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. S. E. Andreev, Crushing, Refinement, and Screening of Useful Raw Materials [in Russian], Nedra. Moscow (1980).

    Google Scholar 

  2. P. M. Sidenko, Refinement in the Chemical Industry [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  3. Yu. Guangbin, M. M. Kuznetsova, M. B. Marakhovskii, and A. A. Aleksina, “Determination of solid material refinement process energy expenditure,” Zh. Tekhn. Fiz, 85(5), 145 – 147 (2015).

    Google Scholar 

  4. Yu. G. Nosov and D. I. Derkachenko, “Sequence during testing corundum for microhardness,” Zh. Tekhn. Fiz., 73(10), 139 – 142 (2003).

    Google Scholar 

  5. P. Prziwara and A. Kwade, “Grinding aids for dry fine grinding processes — Part I: Mechanism of action and lab-scale grinding,” Powder Technology, No. 375, 146 – 160 (2020).

    Article  CAS  Google Scholar 

  6. Yu. E. Pvinskii, Rheology of Dispersed Systems and Ceramic Concretes. Elements of Nanotechnology in Silicate Material science [in Russian]. Politekhnika, St. Petersburg (2012).

  7. V. N. Glukharev, Dry Milling Under Electro-Neutralization Conditions [in Russian], Izd. Politekhn. Univ., St Petersburg (2014).

    Google Scholar 

  8. J. Tomas and S. Kleinschmidt, “ Improvement of flowability of fine cohesive powders by flow additives,” Chem. Eng. Technol., 32(10), 1470 – 1483 (2009).

    Article  CAS  Google Scholar 

  9. B. V. Deryagin, N. V. Curaev, and V. M. Muller, Surface Forces [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  10. P. Prziwara, S. Breitung-Faes, and A. Kwade, “Comparative study of the grinding aid effects for dry fine grinding of different materials,” Miner. Eng., 144, 106030 (2019).

    Article  CAS  Google Scholar 

  11. H. Hasegawa, M. Kimata, and T. Shoji, “Effect of liquid additives and behavior of alumina powder in ultrafine grinding of alumina,” Journal of the Society of Powder, 39(10), 736 – 742 (2002).

    Article  CAS  Google Scholar 

  12. P. A. Rebinder and E. D. Shchukin, “Surface phenomena in solids during deformation and failure,” Uspekhi Fiz. Nauk, 108(9), 3 – 42 (1972).

    Article  CAS  Google Scholar 

  13. V. Chipakwe, P. Semsari, T. Karlkvist, et al., “A critical review on the mechanisms of chemical additives used in grinding and their effects on the downstream processes,” Journal of Materials, Research and Technology, 9(4), 8148 – 8162 (2020).

    Article  CAS  Google Scholar 

  14. K. Schönert, “Role of fracture physics in understanding comminution phenomena,” Trans. Soc. Min. Eng. AIME, No. 252, 21 – 26 (1972).

  15. F. W. Locher and H. M. Seebach, “Influence of adsorption on industrial grinding,” Ind. Eng. Chem. Proc., No. 11, 190 – 197 (1972).

  16. H. Dombrowe, B. Hoffmann, andW. Scheibe, “ÜberWirkungsweise und Einsatzmöglichkeiten von Mahlhilfsmitteln,” ZementKalkGips., No. 11, 571 – 580 (1982).

  17. H. Schubert, “Effects of fluids and additives on grinding processes,” Aufbereitungstechnik, No. 8, 115 – 120 (1988).

    Google Scholar 

  18. P. Prziwara and A. Kwade, “Grinding aids for dry fine grinding processes—Part II: Continuous and industrial grinding,” Powder Technology, 394, 207 – 213 (2021).

    Article  CAS  Google Scholar 

  19. M. Madzhistri, D. Padovani, and P. Forni, “Optimization of cement properties with additions using milling intensifiers,” Tsement evo Primenenie, No. 5, 115 – 116 (2013).

    Google Scholar 

  20. S. P. Sivkov, “Ammonia emission from cement concretes,” Tekhnol. Betona, No. 5/6, 15 – 17 (2012).

    Google Scholar 

  21. P. A. Demidov and R. M. Gainutdinov, “Effective chemical additives for cement production,” Tsement evo Primenen., No. 1, 2 (2019)

  22. M. A. Trubitsyn, N. A. Volvicheva,, L. V. Furda, and N. S. Skrynikov, “Study of the effect Vestn. V. G. Shukova BGTU, No. 12, 84 – 97 (2021).

  23. M. A. Trubutsyn, N. A. Volovicheva, L. V. Furda, et al., “Research in the field of preparing activated aluminum oxide. Part 1. Method for preparing activated alumina,” Novye Ogneupory, No. 3, 16 – 22 (2022).

    Google Scholar 

  24. M.Weibel and R. K. Mishra, “Comprehensive understanding of grinding aids,” ZementKalkGips., No. 6, 28 – 39 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Trubitsyn or N. A. Volovicheva.

Additional information

Translated from Novye Ogneupory, No. 7, pp. 33 – 41, July, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trubitsyn, M.A., Volovicheva, N.A., Furda, L.V. et al. Research in the Area of Preparing Activated Alumina. Part 3. Efficiency of Using Russian Additive-Intensifiers during Milling High-Alumina Raw Materials. Refract Ind Ceram 63, 370–377 (2022). https://doi.org/10.1007/s11148-023-00738-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-023-00738-9

Keywords

Navigation