Skip to main content
Log in

Rheological Characteristics of Suspensions and Structure of Al2O3–CaO and Al2O3–SrO Composites

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results of studies of Al2O3 suspensions made with different CaO and SrO contents are presented. The pH level increased with an increase in the content of CaO and SrO in the Al2O3 suspensions. The dynamic viscosity of the Al2O3 suspensions grew exponentially as the CaO content increased from 0.45 to 2.25 mol% and SrO, from 0.42 to 2.14 mol%. Reflections of CaAl12O19 and SrAl12O19 were observed in sintered materials of suspensions to which CaO and SrO, respectively, were introduced. These compounds had a lamellar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. W. H. Tuan, R. Z. Chen, T. C. Wang, et al., “Mechanical properties of Al2O3/ZrO2 composites,” J. Eur. Ceram. Soc., 22(16), 2827 – 2833 (2002).

    Article  CAS  Google Scholar 

  2. W. Burger and H. G. Richter, “High strength and toughness alumina matrix composites by transformation toughening and ‘in situ’ platelet reinforcement (ZPTA) — The new generation of bioceramics,” Key Eng. Mater., 192 – 195, 545 – 548 (2000).

  3. E. G. Zemtsova, A. V. Monin, V. M. Smirnov, et al., “Formation and mechanical properties of aluminum-oxide ceramics based on aluminum oxide micro- and nanoparticles,” Fiz. Mezomekh., 17(6), 53 – 58 (2014).

    Google Scholar 

  4. V. V. Myl’nikov, A. I. Pronin, and E. A. Chernyshev, “Research of ceramic materials’ influence on functionality of cutting instrument,” Tr. Nizhegorod. Gos. Tekh. Univ. (NGTU) im. R. E. Alekseeva, No. 1 (86), 227 (2011).

  5. J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: Effect of hydration,” Biomaterials, 24(28), 5209 – 5221 (2003).

    Article  CAS  Google Scholar 

  6. L. I. Podzorova, A. A. Il’icheva, O. I. Pen’kova, et al., “Al2O3-based ceramic composites with a high brittle fracture resistance,” Inorg. Mater., 55(6), 628 – 633 (2019).

    Article  CAS  Google Scholar 

  7. L. I. Podzorova, A. A. Il’icheva, V. P. Sirotinkin, et al., “Ceramic composites of the zirconium dioxide and aluminum oxide system including strontium hexaaluminate,” Glass Ceram., 78(5), 231 – 236 (2021).

    Article  CAS  Google Scholar 

  8. K. Cui, T. Fu, Y. Zhang, et al., “Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites,” J. Eur. Ceram. Soc., 41(15), 7935 – 7945 (2021).

    Article  CAS  Google Scholar 

  9. J. Li, E. A. Medina, J. K. Stalick, et al., “Structural studies of CaAl12O19, SrAl12O19, La2/3+δAl12–δO19, and CaAl10NiTiO19 with the hibonite structure; Indications of an unusual type of ferroelectricity,” Z. Naturforsch. B: J. Chem. Sci., 71(5), 475 – 484 (2016).

    Article  CAS  Google Scholar 

  10. N. Yu. Cherkasova, A. A. Bataev, S. V. Veselov, et al., “Effect of percent content of SrAl12O19 on crack resistance of aluminum zirconium ceramic,” Ogneupory Tekh. Keram., No. 4/5, 18 – 23 (2019).

  11. A. Tsetsekou, C. Agrafiotis, and A. Milias, ”Optimization of the rheological properties of alumina slurries for ceramic processing applications. Part I: Slip-casting,” J. Eur. Ceram. Soc., 21(3), 363 – 373 (2001).

    Article  CAS  Google Scholar 

  12. R. I. Kuzmin, N. Y. Cherkasova, A. A. Bataev, et al., “Strontium hexaaluminate formation in alumina and alumina-zirconia matrixes,” Ceram. Int., 47(5), 6854 – 6859 (2021).

    Article  CAS  Google Scholar 

  13. A. Altay and M. A. Gulgun, “Microstructural evolution of calcium-doped α-alumina,” J. Am. Ceram. Soc., 86(4), 623 – 629 (2003).

    Article  CAS  Google Scholar 

  14. D. A. Rani, Y. Yoshizawa, K. Hirao, and Y. Yamauchi, “Effect of rare-earth dopants on mechanical properties of alumina,” J. Am. Ceram. Soc., 87(2), 289 – 292 (2004).

    Article  CAS  Google Scholar 

  15. Z. D. I. Sktani, N. A. Rejab, A. F. Z. Rosli, et al., “Effects of La2O3 addition on microstructure development and physical properties of harder ZTA–CeO2 composites with sustainable high fracture toughness,” J. Rare Earths, 39(7), 844 – 849 (2021).

    Article  CAS  Google Scholar 

Download references

The research was supported by the Russian Science Foundation, Grant No. 21-79-00306; https://rscf.ru/project/21-79-00306/. The research was performed using equipment at the CUC Structure and Mechanical and Physical Properties of Materials at NSTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Cherkasova.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 17 – 20, June, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasova, N.Y., Kuz’min, R.I., Antropova, K.A. et al. Rheological Characteristics of Suspensions and Structure of Al2O3–CaO and Al2O3–SrO Composites. Refract Ind Ceram 63, 311–314 (2022). https://doi.org/10.1007/s11148-022-00727-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00727-4

Keywords

Navigation